Full ninedimensional ab initio potential energy surfaces and trajectory studies of A band photodissociation dynamics: CH3I*→CH3+I, CH3+I*, and CD3I*→CD3+I, CD3+I*

Yoshiaki Amatatsu, Satoshi Yabushita, and Keiji Morokuma

Citation: The Journal of Chemical Physics 104, 9783 (1996); doi: 10.1063/1.471758
View online: http://dx.doi.org/10.1063/1.471758
View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/104/24?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Ab initio study of the He(1 S)+CH(X 2Π) interaction

Quasiclassical trajectory calculations of photodissociation of Ar–H2O(Ξ–Ä) and H2O(Ξ–Ä)

Vibronic effects in the photon energydependent photoelectron spectra of the CH3CN– dipolebound anion

Ab initio configuration interaction calculations of the potential curves and lifetimes of the lowlying electronic states of the lead dimer

Photodissociation of NH2: Twodimensional potential energy surfaces for the dissociation into NH and H
Full nine-dimensional \textit{ab initio} potential energy surfaces and trajectory studies of A-band photodissociation dynamics: CH$_3$I*→CH$_3$+I, CH$_3$+I*, and CD$_3$I*→CD$_3$+I, CD$_3$+I*

Yoshiaki Amatatsu
Department of Chemistry, Akita University, Tegata Gakuen-cho, Akita 010, Japan, and Institute for Molecular Science, Myodaiji, Okazaki 444, Japan

Satoshi Yabushita
Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi, Kohoku-ku, Yokohama 223, Japan, and Institute for Molecular Science, Myodaiji, Okazaki 444, Japan

Keiji Morokuma
Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322, and Institute for Molecular Science, Myodaiji, Okazaki 444, Japan

(Received 19 December 1995; accepted 12 March 1996)

The full nine-dimensional potential energy surfaces (PESs) of the 3Q_0 and 1Q_1 states of CH$_3$I have been calculated with the \textit{ab initio} contracted spin–orbit configuration interaction method. The results are fitted to three diabatic potential terms and their couplings as functions of all the internal degrees of freedom. The transition dipole at the Franck–Condon region has also been calculated. Surface hopping quasiclassical trajectory calculations on these potential energy surfaces have been performed to examine the photodissociation dynamics of both CH$_3$I and CD$_3$I in the A-continuum. The results are in general good agreement with the recent experimental findings. The reasonable I$^*/$(I*+I) branching ratio can be obtained with these PESs when the contribution of direct transition to the 1Q_1 state is considered. The rotational distribution of the CH$_3$ and CD$_3$ fragments and its I$^*/$(I*+I)-channel selectivity are determined by the shape of the PESs with respect to the bending angle outside the conical intersection region. The vibrational distribution of umbrella mode is closely related to the shape of PESs for the umbrella angle; the sudden switch of reaction coordinate from 3Q_0 to 1Q_1 at the conical intersection is the origin of vibrational excitation in the I* channel. The larger umbrella excitation of the CD$_3$ fragment in both I and I* channels, in comparison with the CH$_3$ fragment, is related to the larger separation of the reaction coordinate from the Franck–Condon geometry. The symmetric stretching energy increases during the dissociation, which is related to the shape of PESs with respect to this coordinate, and the excitation of symmetric stretching mode seems to be possible. © 1996 American Institute of Physics.

I. INTRODUCTION

The photodissociation reaction in the A-continuum ($n\rightarrow n^*$) of CH$_3$I, with two reaction channels CH$_3$I*→CH$_3$+I ($^2P_{3/2}$) (I-channel) and CH$_3$+I*($^2P_{1/2}$) (I*-channel), has recently been a subject of great interest from both experimental \cite{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22} and theoretical \cite{23,24,25} points of view. Up to 10 years ago, this photodissociation had been characterized as the reaction that the umbrella mode of the CH$_3$ fragment exhibits an inverted population and I* is preferentially produced. \cite{8,9,10,11,12,13,14,15,16} The widely accepted interpretation had been that a large geometrical change of the CH$_3$ part between the equilibrium and the dissociation limit of CH$_3$I caused vibrational excitation of the umbrella motion. However, during the last 10 years, many experimental findings which contradict this traditional interpretation have been reported \cite{14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34} and a new picture of the reaction mechanism has been required. We have performed \textit{ab initio} spin–orbit configuration interaction (SOCl) calculations and constructed six-dimensional potential energy surfaces (PESs) in lower excited states. \cite{48} From the characteristics of these PESs and semiclassical surface-hopping trajectories, we have provided a new interpretation for these recent experimental findings, such as the hot rotational distribution of the CH$_3$ product in the I channel and the cold distribution in the I* channel, and the hot distribution in the umbrella vibration for the CH$_3$ product in the I channel and the cold distribution in the I* channel. Recently a wave packet simulation has been performed on our \textit{ab initio} PESs. \cite{51}

However, in our previous paper, \cite{48} we did not discuss the following problems which still remain to be solved.

(i) Mass effect on the photodissociation dynamics, i.e., the difference between CH$_3$I and CD$_3$I reactions.

(ii) The possibility of excitation of the symmetric stretching (v_1) mode of the CH$_3$I fragment.

(iii) The character of transitions from the ground to the excited states, $^3Q_{0+}$, 1Q_1, and 3Q_1.

At first, we would like to make a brief review on these problems. Mass effect of the photodissociation provides a unique opportunity to probe details of dynamics of the pro-
cess and various experimental techniques have been applied to CD3I as well as CH3I photodissociation to examine I*/(I*+1) ratio, the vibrational excitation of the umbrella mode, the rotational excitation of the CH3 fragment.10–15,18,22–24,26 The I*/(I*+1) branching ratio of CD3I photodissociation (~0.8) is in general larger than that of CH3I (~0.7), except in the low energy region below 300 nm. The finding is contrary to the intuitive prediction that, because of the heavier mass, the photodissociation of CD3I takes place more adiabatically than that of CH3I and therefore CD3I should more easily produce I in the ground state. Guo made a comment on this discrepancy and pointed out the relative importance of the bending motion.42

The vibrational excitation of the umbrella mode of CH3 (or CD3) has attracted a greatest attention since the early days of research of this reaction.13 In earlier studies, the inverted population in the umbrella mode was found for both I and I*-channel product. More recent experiments have shown, however, that, although the I-channel product has an inverted population, the population of the I*-channel product is not inverted. We have shown in our previous study48 that, after the electronic excitation from the ground state to 3Q0, the umbrella motion of the I*-channel product is adiabatically relaxed through the dissociation process to reach the dissociation limit. On the other hand, the umbrella motion of the I-channel product is suddenly excited upon passing through the conical intersection from the 3Q0 to the 1Q1 state because of a sudden change of the reaction coordinate. The mass effect on the umbrella motion excitation has been experimentally studied. The vibrational population of CD3, for instance, 4:3:2 for v2 = 0:1:2 by Hall et al.39 and 1:1 for v2 = 0:2 by Houston et al.,24 is hotter than that of CH3, for instance, 66:26:8 for v2 = 0:1:2 by Suzuki et al.27 and 1:0:27 for v2 = 0:1 by Zahedih et al.30 The third point of the mass effect is related to the rotational excitation of CH3 (or CD3) product. As reported many times experimentally18,19,21,22,24,34 and theoretically,48,51 the I-channel product is rotationally excited around the axis perpendicular of the top axis of CH3 (or CD3), while the I*-channel product is rotationally much colder. The rotational temperature of CH3 (v2 = 0) and CD3 (v2 = 0) in the I-channel is estimated to be 120±30 and 105±30 K, respectively, by Houston et al.,24 and the average rotational energy to be 104 cm⁻¹ for CH3 and 94 cm⁻¹ for CD3 by Chandler et al.22

The possibility of the excitation of the symmetric stretching (v1) mode of CH3 (or CD3) product is considered unlikely in earlier days, because the vibrational frequency is too high (~3000 cm⁻¹) to excite. However, such a possibility has been pointed out by some groups. Powis and Black have reported that the symmetric stretching excitation has both isotope and channel specificity, i.e., only CD3 in the I-channel is excited.19 They tentatively gave an interpretation that the vibrational level at v1 = 1 was near resonance with the vibrational level with four quanta in the umbrella mode. Houston et al. have reported that CH3 is excited but there is no channel selectivity.24 Chandler et al. have found that the I-channel product is preferentially excited to v1 = 1 over the I*-channel and the I*/(I*+1) ratio was estimated to be >2.0 for CH3I (Ref. 20) and 1.3±0.2 for CD3I.23

The character of transition from the ground to the excited states is an important clue to some mysteries of the photodissociation dynamics of CH3I. Transitions to the 3Q1, 3Q0, and 1Q1 states are allowed in the A-continuum of CH3I. Gedanken and Rowe have carried out the magnetic circular dichroism (MCD) experiment at the A-continuum to find the relative intensity of 3Q0:3Q1:3Q1 = 75:25:1; especially, in the 260–262 nm region, the transition is almost exclusively parallel (94%), i.e., to the 3Q0 state.5 Hunter and Kristjanssen have concluded based on a photoacoustic measurement that the transition of CH3I is mainly 3Q0, at 248 nm, and the parallel component is due to the strong coupling with the 3Q0 state.7 Pipes et al. have also concluded that the parallel transition is dominant at 266 nm, based on the determination of transition dipole matrix elements for 266 nm photofragmentation of (JKM) state-selected CD3I.33 The anisotropy parameter is also important to discuss the character of transition. Several have reported that the transition is mainly to the 3Q0 state and the production of I(zP3/2) is exclusively caused by the curve crossing.12,13,17,23 Very recently, however, photolysis in the low energy region in the A-continuum, i.e., below 300 nm, were carried out to examine the character of the transition. Fairbrother et al. pointed out the importance of the perpendicular transition to 3Q1, where exclusively produces CH3I.31 Hertz and Syage have reported that the transition has a small perpendicular character, σ∥/σ⊥ = 0–0.1 for 266 nm and 0.2–0.3 for 304 nm; in the high and medium energy region of the A-continuum where most of photolysis experiments have been performed, the perpendicular component contributes little, while in the lower energy region, it becomes more important.32

In the present study, we mainly discuss the photodissociation dynamics to which we did not refer in our previous study, based on the surface hopping quasiclassical trajectory calculation using the nine dimensional PESs. In Sec. II, we discuss the method of calculation for obtaining the adiabatic potential energy and transition dipole function, the transformation from the adiabatic to the diabatic basis, and analytical fitting of diabatic energies and the method of surface hopping quasiclassical trajectory calculation. In Sec. III, we discuss at first the character of transitions from the ground to excited states and then the global features of the PES of 1Q1 and 3Q0, with the emphasis on the CH stretching mode and on the difference between CH3I and CD3I umbrella motion. We also discuss the mass effect on the I*/(I*+1) branching ratio, the rotational excitation, the umbrella mode excitation, and the possible symmetric stretching excitation in CD3 as well as in CD3. Finally, in Sec. IV, we give our conclusions.

II. METHODS OF CALCULATION

A. Adiabatic energies

Ab initio spin–orbit configuration interaction (SOCl) calculations have been performed for the ground and lower

9784 Amatatsu, Yabushita, and Morokuma: Photodissociation dynamics: CH3I*→CH3I, CH3I+I*
C. Analytical fitting of diabatic potential terms

We have fitted the six diabatic matrix elements to analytical functions with respect to ten internal coordinates (including one redundancy), defined in Fig. 1. As mentioned in our previous paper, three diagonal terms in practice obey an energetic and symmetry hierarchy rule with respect to the internal coordinates, and this is true even if three CH stretching coordinates are included. The diagonal terms change within 0.1 a.u. with respect to R, within 0.01 a.u. with respect to r_i’s as well as α, and within 0.001 a.u. with respect to the other parameters in the region probed by classical trajectories. This difference in the magnitude of energy leads to an additivity rule among the internal coordinates, i.e., the diagonal terms can be expressed as a sum of five terms which contain only the relevant internal coordinates; (i) the R and α term, which is the largest contribution to the diabatic energy, (ii) the CH stretching term which relates to the r_i’s and their couplings with R and α, (iii) the term including the bending angle θ and its direction ϕ of the I atom and their couplings with R and α, (iv) the CH deformation term which contains the β_i’s and their couplings with R and α, and (v) the CH force field in the dissociation limit. Furthermore, in case of the diabatic triplet correlating to CH_3I^+ (V_3 in our definition), there is the constant term which is the energy difference between the ground ($^2P_{3/2}$) and the excited ($^2P_{1/2}$) states of the iodine atom, $\Delta E_1=0.034\,646$ a.u. These five terms can be separately fitted to analytical functions with respect to only the relevant internal coordinates.

Before doing actual fitting, we have to consider the requirement that the adiabatic energies 3Q_0 and 1Q_1 are unchanged by permutation among the three hydrogens, which is related to the internal coordinates ϕ, β_i’s and r_i’s. This means that every term, (i)–(v) above, in each diabatic matrix element, V_1, V_2, V_3, V_{13}, V_{23}, and V_{12}, have to satisfy this permutation requirement. We have analyzed the requirement in detail for seven internal coordinates in the previous paper. Additional consideration is needed when three CH distances are included and the required form is discussed in the Appendix.

First, we made the fifth term, the force field of CH$_3$ in the dissociation limit with D_{3h} symmetry. The potential functions of CH$_3$ we used is

$$V_{\text{CH}_3}=k_2x^2+k_4x^4+(1/2)k_3S_1^2+(1/2)k_4S_4a^2+S_4b^2$$

$$+(1/2)k_5(S_4a+S_4b),$$

where $x=r_e^c\sin\Delta\alpha$, $\Delta\alpha=\alpha-\pi/2$, $S_1=(1/\sqrt{3})(\Delta r_1+\Delta r_2+\Delta r_3)$,

$S_{4a}=(1/\sqrt{6})(2\Delta r_1-\Delta r_2-\Delta r_3)$, $S_{4b}=(1/\sqrt{6})(2\Delta r_2-\Delta r_3)$.
\[\Delta r_i = r_i - r_i^\infty \quad (i = 1, 2, 3), \]
\[S_{5a} = (1/4)(2\Delta \beta_1 - \Delta \beta_2 - \Delta \beta_3), \]
\[S_{5b} = (1/2)(\Delta \beta_2 - \Delta \beta_3), \]
\[\Delta \beta_i = \beta_i - 2\pi/3 \quad (i = 1, 2, 3). \]
The coupling terms, \(S_{4a}S_{5a} \) and \(S_{4b}S_{5b} \), are small and are neglected in \(V_{\text{CH}_3} \). One can see easily that \(V_{\text{CH}_3} \) satisfies with the permutation requirement.

Next we fitted the other four terms, (i)–(iv) above, of each diagonal matrix element. We have used more flexible functional forms from the previous ones, so that a good fit can be obtained not only in the classically probed region but also in the region which is away from it. The actual functional forms are adopted as follows:

\[V_1 = (A_0 + A_1 \Delta R + A_2 \Delta R^2 + A_3 \Delta R^3)^{\exp}(-A_4 \Delta R) + (A_5 + A_6 \cos \theta)S_1 \exp(-A_4 \Delta R) + [A_7^\prime(\cos \theta - 1) + A_8(\cos 2\theta - 1)] \]
\[+ (A_9 - A_7^\prime)\cos(3\theta - 1) + A_9 X \sin \theta \exp(-A_4 \Delta R) + (A_{10} + A_{11} \cos \theta)S_{5a} \exp(-A_4 \Delta R) + V_{\text{CH}_3}, \]
\[V_2 = (A_0 + A_1 \Delta R + A_2 \Delta R^2 + A_3 \Delta R^3)^{\exp}(-A_4 \Delta R) + (A_5 + A_6 \cos \theta)S_1 \exp(-A_4 \Delta R) + [A_7^\prime(\cos \theta - 1) + A_8(\cos 2\theta - 1)] \]
\[+ (A_9 - A_7^\prime)\cos(3\theta - 1) - A_9 X \sin \theta \exp(-A_4 \Delta R) - (A_{10} + A_{11} \cos \theta)S_{5a} \exp(-A_4 \Delta R) + V_{\text{CH}_3}, \]
\[V_3 = (B_0 + B_1 \Delta R + B_2 \Delta R^2 + B_3 \Delta R^3)^{\exp}(-B_4 \Delta R) + (B_5 + B_6 \cos \theta)S_1 \exp(-B_4 \Delta R) + [B_7^\prime(\cos \theta - 1) + B_8(\cos 2\theta - 1)] \]
\[+ (B_9 - B_7^\prime)\cos(3\theta - 1) + B_9 X \sin \theta \exp(-B_4 \Delta R) + (B_{10} + B_{11} \cos \theta)S_{5a} \exp(-B_4 \Delta R) + V_{\text{CH}_3} + \Delta E_1, \]

where
\[\Delta R = R - R_c, \]
\[X(\phi, \beta_2, \beta_3, \xi) = \{\cos(3\phi + \xi) + \cos[3(\phi + \beta_3) + \xi]\} \]
\[+ \cos[3(\phi - \beta_2 + \xi)]/3, \]
\[\tan \xi = \tan(\xi_1 + \xi_2), \quad \tan \xi_1 = S_{5b}/S_{5a}, \]
\[\tan \xi_2 = S_{4b}/S_{4a}. \]

The coefficients \(A_i \)'s and \(B_i \)'s without *, represented in general by \(P_i \), are the following functions of \(\Delta \alpha \):
\[P_i = P_{10} + P_{11} \cos \Delta \alpha + P_{12} \cos 2\Delta \alpha. \]
The coefficients \(A_i \)'s and \(B_i \)'s with *, represented in general by \(Q_i \), are the following functions of \(\Delta \alpha \):
\[Q_i = Q_{10} + Q_{11} \sin \Delta \alpha + Q_{12} \sin 2\Delta \alpha. \]
The first and second lines on the right-hand side of Eqs. (2) and (3), which relate to only \(R, \alpha, \) and \(S_1 \), are the same because \(V_1 \) and \(V_2 \) are degenerate in \(C_{3v} \) symmetry. The second lines in Eqs. (2)–(4), relating to the symmetric CH stretch, are all assumed to have the same functional form which is the first order with respect to \(S_1 \). The third lines, relating to the direction of bending of the I atom, are different from each other, though they share the common exponential factor \(A_4 \) for a convenience in fitting. The fourth lines in Eqs. (2)–(4), relating to the \(\text{CH}_3 \) deformation, are functions of \(S_{5a} \) and differ only in sign between Eqs. (2) and (3). Although the fourth line of \(V_3 \) also contains a formal dependence on \(S_{5a} \), the actual dependency was found to be small and, therefore, \(B_{10} \) and \(B_{11} \) are set to zero. We found that the diabatic diagonal elements do not change with \(S_{4a} \) and thus no functional dependency is included in Eqs. (2)–(4) except for the \(V_{\text{CH}_3} \) part. The fifth lines in Eqs. (2) and (4) describe the force field of \(\text{CH}_3 \) in the dissociation limit. Furthermore, the constant \(\Delta E_1 \) is added to the fifth line in Eq. (4). The fitted coefficient sets of the diagonal terms are listed in Table I.

Next we discuss the fitting forms of the off-diagonal elements, which also obey the additivity rule. The actual functional forms used are shown in Eqs. (7)–(9),

\[V_{13} = (D_1 \sin \theta + D_2 \sin 2\theta)X[(R - D_3)^2 + D_2^\prime] \]
\[+ D_5^\prime \cos \theta)S_{4a}[(R - D_3)^2 + D_2^\prime] + (D_7 \]
\[+ D_8^\prime \cos \theta)S_{4a}[(R - D_3)^2 + D_2^\prime], \]
\[V_{23} = -(D_1 \sin \theta + D_2 \sin 2\theta)Y[(R - D_3)^2 + D_2^\prime] \]
\[- (D_5 + D_6^\prime \cos \theta)S_{5b}[(R - D_3)^2 + D_2^\prime] - (D_7 \]
\[+ D_8 \cos \theta)S_{5b}[(R - D_3)^2 + D_2^\prime], \]
\[V_{12} = A_9 \sin \theta Y \exp(-A_4 \Delta R) + (A_{10} \]
\[+ A_1 \cos \theta)S_{5b} \exp(-A_4 \Delta R), \]

where
\[Y(\phi, \beta_2, \beta_3, \xi) = \{\sin(3\phi + \xi) + \sin[3(\phi + \beta_3) + \xi]\} \]
\[+ \sin[3(\phi - \beta_2 + \xi)]/3. \]

These off-diagonal elements are all zero within the \(C_{3v} \) symmetry. Since the diabatic states \(\Phi_1 \) and \(\Phi_2 \) belong to \(A' \) and \(A'' \) in \(C_3 \) symmetry, respectively, \(V_{23} \) is 0 in the \(C_3 \) symmetry, whereas \(V_{13} \) is nonzero even in \(C_3 \). The singlet–triplet coupling terms \(V_{13} \) and \(V_{23} \) have been found to be reproduced well by Lorentzian functions which have the maximum with respect to \(R \) near the conical intersection.
The off-diagonal term V_{12} between the two singlet states has been found to fit well to the function relating to the ϕ and β_i parts of the diagonal element V_1 (or V_2) and satisfies the permutation requirement as pointed out before. The coefficients D_i without $* \!$ are also given in the form of Eq. (5) and the coefficients $D^* \!$ with $* \!$ in the form of Eq. (6), both as functions of $\Delta \alpha$. The fitted coefficient sets of the off-diagonal elements are listed in Table II.

D. Transition dipole

The transition dipole moments and oscillator strengths from the ground to the first excited manifold ($n \rightarrow \sigma^*$) at the Franck-Condon (FC) region have been calculated. First, permanent dipole moments and transition dipole moments among spin-free states have been calculated with the spin-free CI, and then the transition dipoles including spin-orbit interaction have been calculated by multiplying spin-free dipoles by the contracted SOCI coefficients. The actual expression of the transition dipole between the ground state and excited state after contracted SOCI is given by

$$
\mu_{\text{eff}} = \sum \sum c_{iJ}^*|i\rangle|\mu|j\rangle + \sum \sum c_{iJ}^*|i\rangle|\mu|^3_j,
$$

(10)

where the summation covers three singlet $|i\rangle^1$ ($i = 1$ to 3) and nine triplet $|i\rangle^3$ ($i = 4$ to 12) states, and c_{ij}, for instance, represents the contracted SOCI coefficient for spin-orbit free state j in the SOCI state J.

E. Classical trajectory calculation

The initial condition of 500 trajectories starting on the excited state was determined using the normal coordinates of the ground state, in the same way as was done in our previous paper. The parent molecule CH$_3$I (or CD$_3$I) is assumed to be in the ground rotational and vibrational state. The calculated normal frequencies, shown in Table III, are, as expected, on the average about 8.2% larger than the observed fundamental frequencies for both species. Propagation of trajectories on the excited states and termination and analysis of trajectories were performed in the same way described in the previous paper. We have also briefly examined the effect of using the more correct Wigner distribution for selection of initial conditions on the $1^\sigma/1^\pi$ branching ratio.

III. RESULTS

A. Transition moment at the Franck-Condon region

Table IV lists excitation energies, transition moments, and oscillator strengths from the ground to the first excited ($n \rightarrow \sigma^*$) manifolds at the ground state equilibrium geometry. The ratio of oscillator strengths for three allowed transitions, Q_0 (parallel), Q_1 (perpendicular), and Q_2, is 0.81:0.17:0.02 and the parallel transition to Q_2 is the strongest, in qualitative agreement with experimental findings. In the low energy region of A-band the character of the perpendicular transition to Q_1 should increase, in accord with the recent experimental report. In the high energy region of A-band, the perpendicular transition to Q_1 becomes important. The situation is similar to that of ICN, though the dependency of CH$_3$I photodissociation dynamics on the excitation energy is not as clear as that of ICN.

B. Features of the potential energy surfaces

In the previous paper, we discussed the PESs in detail with respect to both the umbrella angle and the bending
TABLE IV. Excitation energies, transition dipole moment, and oscillator strength (in cm\(^{-1}\)) and their \(L\) matrix.

<table>
<thead>
<tr>
<th>(a_s) symmetry</th>
<th>(E(\text{cm}^{-1}))</th>
<th>(\mu^a_{x\text{-}})</th>
<th>(\mu^a_{y\text{-}})</th>
<th>(\mu^a_{z\text{-}})</th>
<th>(L) matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e) symmetry</td>
<td>3 052.6 (2 130)</td>
<td>0.0177</td>
<td>0.0201</td>
<td>0.0233</td>
<td>0.0032</td>
</tr>
<tr>
<td>(e) symmetry</td>
<td>3 060.3 (2 130)</td>
<td>0.0177</td>
<td>0.0201</td>
<td>0.0233</td>
<td>0.0032</td>
</tr>
</tbody>
</table>

\(a\) The numbers in the parentheses are observed fundamental frequencies from Ref. 54.

\(b\) The distance between C and I atoms, \(r_c\) is the distance between C and \(H^*\) atoms, \(\alpha_{i}\) is the angle of \(H'CI\) and \(\gamma_{i}\) is the angle of \(H'CH^*\): \((i,j,k) = (1,2,3),(2,3,1),(3,1,2)\).

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 128.114.34.22 On: Mon, 24 Nov 2014 22:19:36

angle, important coordinates for the dynamics. In the present paper, we have used more flexible functional forms to cover very distorted geometries as well as the classically probed region. Thus the quantitative feature of the PESs changed somewhat, though the qualitative character remained unchanged. Therefore, we will briefly discuss again the PESs for umbrella and bending as well as for the newly added CH\(_3\) stretches.

<table>
<thead>
<tr>
<th>TABLE IV. Excitation energies, transition dipole moment, and oscillator strength at the equilibrium geometry.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excitation energy (eV)</td>
</tr>
<tr>
<td>(X^1\text{A}_1(1\text{A}_1))</td>
</tr>
<tr>
<td>(\rightarrow Q_0(2\text{E}))</td>
</tr>
<tr>
<td>(X^1\text{A}_1(1\text{A}_1))</td>
</tr>
<tr>
<td>(\rightarrow Q_0(3\text{E}))</td>
</tr>
<tr>
<td>(X^1\text{A}_1(1\text{A}_1))</td>
</tr>
<tr>
<td>(\rightarrow Q_0(2\text{A}_2))</td>
</tr>
<tr>
<td>(X^1\text{A}_1(1\text{A}_1))</td>
</tr>
<tr>
<td>(\rightarrow Q_0(3\text{E}))</td>
</tr>
</tbody>
</table>

\(a\) For degenerate transition, both \(A'(x)\) and \(A'(y)\) components are given.

shallow well of 0.212 eV at \(R = 6.233\) a.u. and \(\alpha = 93.9\) outside the conical intersection, in agreement with an estimation based on the CH\(_3\)I (or CD\(_3\)I) photolysis experiment in rare gas matrix.

The PES contour maps in the \(C_{3v}\) symmetry are shown in Fig. 3, where the three CH distances are fixed to \(r_c^\infty\). The coordinates used are

\[
R_n = R - (m_c/m_C) r_c^\infty \cos \alpha, \\
r_{\text{int}} = -r_c^\infty \cos \alpha, \tag{11}
\]

which diagonalize the kinetic energy operator.\(^{48}\)

Figure 3 shows the PES contour maps in the new coordinate system, scaled with the proper mass so that the dynamics on these surfaces can be treated as that of a rolling ball. For CH\(_3\)I in Figs. 3(a) and 3(b), the reaction coordinate (RC), the minima with respect to \(r_c\) for each \(R_n\), on \(3Q_0\), passes the vicinity of the Franck–Condon geometry and intersects with \(1Q_1\) at \(R_n = 4.517\) and \(r_{\text{int}} = 0.497\), i.e., \(R = 4.417\) and \(\alpha = 104.0\) deg. For CD\(_3\)I in Figs. 3(c) and 3(d), the RC passes the region away from the Franck–Condon geometry, and the degrees of sudden switch of RC from \(3Q_0\) to \(1Q_1\) at the crossing substantially is larger than for CH\(_3\)I. In Fig. 3(d), RC of \(1Q_1\) passes through the region of \(-0.17 < r_{\text{int}} < 0.0\), i.e., \(85 < \alpha < 90\) deg.

Figure 4 shows the potential energy curves with respect to the bending angle \(\theta\) at various stages of dissociation. At the FC region, \(3Q_0\) surface has a minimum at \(\theta = 0\), whereas \(1Q_1\) surfaces have minima at \(\theta = \pm 3.6\) due to the Jahn–Teller distortion. At the conical intersection region, all three adiabatic surfaces have minima at a bent structure, with the largest bending stabilization of \(\Delta E(\theta_{\text{min}}) = E(\theta_{\text{min}}) - E(0) = -7.87 \times 10^{-3} \text{ eV at } \theta_{\text{min}} = 5.6.\) Outside the crossing region, \(3Q_0\) still has a positive bending force constant at \(\theta = 0\), while \(1Q_1\) surfaces become very flat with respect to \(\theta\). As in the previous PESs,\(^{48}\) this difference in the \(\theta\) depen-
dence between the 1Q_1 and 3Q_0 surfaces is the most important factor determining the energy partitioning into the CH$_3$ (CD$_3$) rotation.

Next we describe the PESs with respect to three CH stretching coordinates. Both 3Q_0 and 1Q_1 adiabatic PESs with respect to the degenerate CH$_3$ stretching coordinates, S_{4u} and S_{4b}, are almost the same as the corresponding part of V_{CH_3} at the dissociation limit. As discussed in Sec. II C, there is no numerical dependency on either coordinate in the diabatic diagonal terms and the small dependency of the off-diagonal terms, V_{12} and V_{23}, has little effect. On the other hand, the adiabatic PESs with respect to the symmetric CH$_3$ stretching coordinate S_1 are different from that of V_{CH_3}, because the diabatic diagonal terms have first order terms in S_1, as shown in Eqs. (2)–(4) in Sec. II C. Figure 5 show the PESs with respect to S_1. At the FC region, the CH distance is longer ($S_{1\text{min}}=0.0498$ or $r_{\text{CH}}=2.0814$) than in the ground state ($S_1=0.0226$ or $r_{\text{CH}}=2.0657$), which in turn is longer than in the CH$_3$ fragment ($S_1=0$ or $r_{\text{CH}}=2.0527$). There is an energy difference $\Delta E(S_{1\text{min}})=E(S_{1\text{min}})-E(S_1=0)$ of about 0.01 a.u. between $S_{1\text{min}}$ and $S_1=0$. As the dissociation proceeds, the CH distance smoothly approaches the CH$_3$ value. The calculated values of $S_{1\text{min}}$ and $\Delta E(S_{1\text{min}})$ are shown in Table V. This behavior of PESs with respect to S_1 is related to the mechanism of symmetric stretching excitation of the CH$_3$ product, as will be discussed later in detail.

Finally, we briefly describe the PESs with respect to the CH$_3$ deformation coordinates, $S_3's$. The 3Q_0 surface with respect to these coordinates is almost the same as that of V_{CH_3}, as the diabatic V_3 term has no dependency and the off-diagonal contributions from $V_{12}, V_{13},$ and V_{23} are small. On the other hand, the diabatic V_1 and V_2 have $S_{5\alpha}$-dependency, which increases V_1 and decreases V_2 as $S_{5\alpha}$ increases. This dependency, however, does not play an important role in the dynamics.

C. $1^+/(1^+ + 1^-)$ branching ratio

In our previous classical trajectory results on six-dimensional PESs, when the trajectories are started on the...
freedom of CH$_3$I are included, we have obtained an agreement of the calculated results in comparison with a variety of experimental findings. We have suggested that this discrepancy is possibly caused by the fact that three CH frequencies of CH$_3$I are so high that the population of vibrationally excited states is never important in most photodissociation experiments. This is in contrast to the situation for ICN photodissociation, where initial vibrational excitation of ICN is important for discussion of the dynamics.\(^\text{49}\)

We have calculated the I*/(1I$^\ast+1$) branching ratio for CD$_3$I photodissociation to be 0.82 (0.80 with Wigner initial conditions) when trajectories are started on 3Q_0, and 0.73 when the contribution of direct excitation to 1Q_1 is considered. The calculated branching ratio is not sensitive to the mass, whereas experiments indicate a significant mass effect, ~ 0.7 for CH$_3$I, ~ 0.8 for CD$_3$I. Since surface hopping trajectories may not be the most reliable ways of obtaining the branching ratio, we are planning to perform quantum dynamic calculations for more rigorous comparison.\(^\text{55}\)

Since the contribution of the direct excitation to the 1Q_1 state is relatively small, in the following subsections, all the discussions on the dynamics will be made solely based on trajectories starting on 3Q_0.

D. Rotational excitation

In our previous 6D trajectory study, we have obtained a reasonable agreement with experiments concerning the rotational distribution of the CH$_3$ product; in the I-channel CH$_3$ is rotationally excited around the axis perpendicular to its top axis, while in I*-channel it is rotationally cold.\(^\text{48}\) The results with the new 9D trajectories are shown in Fig. 6. Figure 6(a) gives the rotational distribution of the CH$_3$ fragment. The distribution of the I-channel product has a peak at $N=4$ and that of the I*-channel is colder with a maximum at $N=0$. This can be compared with our 6D results, the I-channel peak at $N=5$ and the I*-channel at $N=1$; the latter peak is considered to be spurious due to the three frozen CH degrees of freedom. The mechanism of rotational excitation is quali-

TABLE V. Stabilization energy ΔE^*(in eV) with respect to S_1.

<table>
<thead>
<tr>
<th>R</th>
<th>α</th>
<th>$\Delta E(S_{\text{min}}) \times 10^{-3}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.040 95</td>
<td>108.5</td>
<td>12.899 (0.050) 9.303 (0.042)</td>
</tr>
<tr>
<td>4.417</td>
<td>104.0</td>
<td>3.425 (0.026) 1.891 (0.019)</td>
</tr>
<tr>
<td>5.0</td>
<td>102.0(^a)</td>
<td>0.627 (0.010) ...</td>
</tr>
<tr>
<td></td>
<td>99.7(^b)</td>
<td>... 0.131 (0.005)</td>
</tr>
</tbody>
</table>

\(^a\) ΔE is defined by $\Delta E(S_{\text{min}}) = \Delta E(S_1=0)$.

\(^b\) Optimized α for each state.
tatively the same as before. Figure 7 shows the plots of rotational energy as functions of time. Before a trajectory reaches the conical intersection region, the rotation is quickly excited because of zero-point CH₃ degenerate rocking vibration on the steep Q₀ surface. After the conical intersection, the trajectory that made a transition to Q₁ maintains the rotational energy up to the I-channel dissociation limit, while the one that stayed on Q₅ loses rotation quickly. This difference behaviors are dictated by different shapes of PESs, as discussed in Sec. III B.

Figure 6(b) shows the rotational distribution of the CD₃ fragment. The distributions have peaks at N = 5 for the I-channel and N = 3 for the I*-channel, respectively. Both of distributions peaks are shifted up by one and three angular momentum units, respectively, compared with those of the CH₃ fragment. This is in qualitative agreement with experimental findings. For instance, Chandler et al. estimated the average of the rotational energy to be 104 cm⁻¹ for CH₃ and 94 cm⁻¹ for CD₃, in terms of angular momentum units, N = 3–4, and N = 4–5, respectively. The reason for the higher rotational angular momentum of CD₃ fragment may be justified as follows. CD₃I is heavier than CH₃I and takes longer to reach the crossing region, accumulating more angular momentum. After the crossing region, the rotation is suppressed either on Q₁ or on Q₅, though by different degrees. Since the moment of inertia around the perpendicular axis is larger for CD₃, on whatever PES, the degree of rotational dumping would be smaller, leaving a larger angular momentum in the product than for CH₃.

E. Vibrational excitation of umbrella mode

As shown in Fig. 8(a), the vibrational distributions of the CH₃ umbrella mode reproduce the experimental I⁺/(I⁺ + I) channel selectivity very well. The origin of the selectivity is exactly the same as before. As shown in Fig. 3(a) a trajectory in the I⁺-channel starting from the Franck–Condon excitation travels around the RC up to the dissociation limit and therefore the geometrical relaxation from the C₅ᵥ to D₃h structure takes place gradually and no vibrational excitation is expected. However, a trajectory to dissociate in the I-channel experiences a sudden change in PES at the conical intersection region, i.e., the RC at rₑ – 0.1 on Q₁ switches to the RC at rₑ – 0.0 on Q₁, and a large vibrational excitation takes place instantaneously.

Figure 8(b) shows the distribution of the CD₃ umbrella mode. The populations of the vibrationally excited products for both I and I⁺ channels are larger than those of the CH₃ fragment. As seen in Figs. 3(a) and 3(c) the RC on Q₀ is farther away from the Franck–Condon geometry for CD₃I than for CH₃I. Thus the umbrella vibration quantum number is expected to be larger for CD₃I than for CH₃I by the time trajectories on Q₀ reach the crossing region, which is actually seen in comparison of Figs. 8(c) and 8(d). Another factor why the umbrella mode of the CD₃ fragments for both I⁺ and I channels are more vibrationally excited than those of the CH₃ is a heavier mass of CD₃. That is, the heavier fragments of CD₃ is harder to be relaxed.

F. Vibrational excitation of symmetric stretching mode

In the present calculation, all of trajectories give the CH₃ (and CD₃) products in ν₁ = 0 of the symmetric stretching mode. However, our present classical treatment of the vibrational quantum number of assigning the quantum number zero for vibrational energies of up to 1.0hν₁ may not be appropriate, and at least the distribution of high frequency modes should be treated quantum mechanically. Such a quantum mechanical study is progress in collaboration with Hammerich and Kosloff. Here we will give a classical evidence that the average energy is more than 0.5hν₁ in the product. In Table VI, we show the average of the vibrational energy in the symmetric stretch mode at the conical interac-

FIG. 7. Plots of time vs the rotational energy of (a) CH₃ and (b) CD₃ for a randomly selected trajectory. The solid line represents a trajectory which stayed on Q₀ to give the I⁺ channel product. The dotted line is the same trajectory but was forced to switch to Q₁ to give the I channel product.

FIG. 8. The vibrational distribution of the umbrella mode of (a) CH₃ and (b) CD₃ for the final state, (c) CH₃ and (d) CD₃ at the transition state. Glossaries are the same as in Fig. 6.
The vibrational energy in the intersection region, the potential energy release is small and mode, as well as to some other modes. After the conical steep dissociation pathway to the conical intersection region, no channel specificity on the symmetric stretch energy in the

\[v_1 = 0.65 \text{ cm}^{-1} \]

for both I* and CD3 I. As is seen in Table VI, the symmetric stretch energy at the conical intersection region is substantially different from the ground state reactant. At the Franck–Condon region, the optimal \(S_1 \) value in the excited state is different from in the ground state, as discussed in Sec. III B, and this gives some \(S_1 \) vibrational excitation. As the molecules travel down the steep dissociation pathway to the conical intersection region, the released potential energy is transferred in part to this mode, as well as to some other modes. After the conical intersection region, the potential energy release is small and the vibrational energy in the \(S_1 \) mode is dissipated into translation and other modes. The shapes of \(3Q_0 \) and \(1Q_1 \) PESs with respect to \(S_1 \) are similar and trajectories on both PESs behave similarly as to the \(S_1 \) vibration, resulting in virtually no channel specificity on the symmetric stretch energy in the product.

Table VI. The average vibrational energy of the symmetric stretching mode (in cm⁻¹).

<table>
<thead>
<tr>
<th></th>
<th>CH₃I (reactant)</th>
<th>CH₃I (TS)</th>
<th>CH₃ (product)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I*</td>
<td>1605</td>
<td>2444</td>
<td>2049</td>
</tr>
<tr>
<td>I</td>
<td>1605</td>
<td>2424</td>
<td>2093</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>CD₃I (reactant)</th>
<th>CD₃I (TS)</th>
<th>CD₃ (product)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I*</td>
<td>1150</td>
<td>1824</td>
<td>1520</td>
</tr>
<tr>
<td>I</td>
<td>1150</td>
<td>1965</td>
<td>1603</td>
</tr>
</tbody>
</table>

*At the conical intersection.

The rotational distribution of the CH₃ fragments reproduces the experimental findings; the I-channel product is hot with a peak at \(N = 4 \), on the other hand, the I*-channel product is much colder with a maximum at \(N = 0 \). The mechanism of the rotational excitation and its channel selectivity closely relates to the shape of the PESs with respect to the bending angle outside the conical intersection. The CD₃ product has a higher rotational excitation than the CH₃ product, in agreement with experiments, which can be explained by considering two factors, (i) the shape of the bending PESs outside the conical intersection region, and (ii) the difference in the moment of inertia between CH₃ and CD₃.

The vibrational distribution of the umbrella mode of CH₃ (CD₃) is determined by the shape of the PESs with respect to the umbrella angle and its coupling with the CI distance \(R \). In the I-channel product the product is vibrationally hot due to the sudden change of the RC from \(3Q_0 \) to \(1Q_1 \) at the conical intersection. The experimental results that both I* and I channel products of CD₃ have hotter distributions than those of CH₃ is mainly due to the fact that the RC on the \(3Q_0 \) of CD₃ is farther away from the Franck–Condon geometry than that of CH₃.

Trajectory calculation gives the CH₃ and CD₃ product all in the ground symmetric stretching state, if classical vibrational numbers are truncated. However, the average symmetric stretching energy is substantially increased from \(0.5hν_1 \) to 0.65–0.7hν₁. A more reliable quantum mechanical calculation will be needed to examine the possibility of the \(ν_1 = 1 \) excited state in the product.

Thus with the new nine-dimensional PESs and surface-hopping trajectories, we were able to explain experimental results better than the previous six-dimensional PESs. We could also explain most of the experiments for CD₃I photodissociation as well. However, in order to discuss the dynamics in detail, we have to treat the motion of the nuclei on the nine-dimensional PESs quantum mechanically. Such a work is now in progress with Kosloff and Hammerich and will be published elsewhere.

The largest deficiency of our previous 6D PESs as well as the new 9D PESs is in the Franck–Condon region, where the calculated \(X \rightarrow 3Q_0 \) vertical excitation energy of 5.12 eV is too large compared with the experiment of 4.7 eV and the PES is too steep to reproduce the width of the absorption spectrum. Various modifications of PESs to improve agreement with experiments have been examined extensively and will be published elsewhere.

ACKNOWLEDGMENTS

We would like to acknowledge Dr. Kosloff and Dr. Hammerich for valuable comments and discussions. All the \textit{ab initio} calculations were carried out at the IMS computer center. Y.A. and S.Y. thank Grants-in-Aid for Scientific Research in the Priority Area of “Theory of Chemical Reactions” from the Ministry of Education, Culture, and Science of Japan. K.M. is grateful to a grant from the Air Force Office of Scientific Research, F49620-95-1-0182.
APPENDIX

Considering the three factors, (i) the numerical behavior of the diabatic terms, (ii) the requirement that the adiabatic 3Q_0 and 1Q_1 energies are invariant under permutation among three hydrogen atoms, and (iii) the fact that the force field of CH$_3$ in the dissociation limit, V_{CH_3}, in each diagonal term satisfies the requirement (ii), the fitting functions except for V_{CH_3} and the constant ΔE_1 are assumed to have the forms shown in Eqs. (A1)–(A6),

\[
\begin{align*}
V_1 &= V_{10} + P_1 X + P_2 S_{5a}, \\
V_2 &= V_{10} - (P_1 X + P_2 S_{5a}), \\
V_3 &= V_{30}, \\
V_{12} &= P_1 Y + P_2 S_{5b}, \\
V_{13} &= Q_1 X + Q_2 S_{4a} + Q_4 S_{4a}, \\
V_{23} &= -(Q_1 Y + Q_2 S_{5b} + Q_3 S_{4b}),
\end{align*}
\]

where V_{10}, V_{30}, P_1, P_2, Q_1, Q_2, and Q_3 are functions with respect to R, α, β, and S_1, which are invariant under permutation, and S_{4a}, S_{4b}, S_{5a}, S_{5b}, X, and Y are defined by Eqs. (A7)–(A9), where

\[
\begin{align*}
S_1 &= (1/3)(\Delta r_1 + \Delta r_2 + \Delta r_3), \\
S_{4a} &= (1/6)(2\Delta r_1 - \Delta r_2 - \Delta r_3), \\
S_{4b} &= (1/6)(2\Delta r_2 - \Delta r_3), \\
S_{5a} &= (1/2)(\Delta r_2 - \Delta r_3), \\
\end{align*}
\]

\[
x^3 - (2V_{10} + V_{30})x^2 + \left[-(V_{10}^2 + 2V_{30}V_{10}) + (P_1^2 + Q_1^2)(X^2 + Y^2) + Q_2^2(S_{4a}^2 + S_{5a}^2) + (P_2^2 + Q_3^2)(S_{4b}^2 + S_{5b}^2) + 2Q_1Q_3(XS_{4a} + YS_{5a}) + 2Q_1Q_2(XS_{4a} + YS_{5b}) \right] x \\
- [V_1V_2V_3 - (V_1V_2V_3^2 + V_1V_2V_3^2 + V_1V_2V_3^2 + V_1V_2V_3^2) + 2V_{12}V_{23}V_{13}] = 0.
\]

In order to satisfy the energy invariance under permutation, the coefficients of the cubic equation have to satisfy the invariance under permutation. The coefficients of the second order and the first to fifth coefficients of the first order are invariant. If one chooses the phase factor ξ determined by Eq. (A10), the sixth and seventh coefficient of the first order in Eq. (A11), $2(P_1P_2 + Q_1Q_2)(XS_{5a} + YS_{5a})$ and $2Q_1Q_3(XS_{4a} + YS_{5b})$, respectively, are possible to be simultaneously invariant due to the fact that the dihedral angle set A is invariant. It can be also proved that the constant term is invariant under permutation.

52 Hammerich et al. made a comment on our transformation, which was that two diabatic states $^1\Phi_1$ and $^1\Phi_2$ can be further transformed into potential energy surfaces and elimination of any ϕ dependence, though we did not transform into them (see Ref. 51).