5 The CO$_2$ laser

The CO$_2$ laser works in the mid-IR range, 9–11 µm, on ca. 100 vibration–rotation transitions. In its classical version it operates at a pressure of 10–20mbar with a mixture of CO$_2$:N$_2$:He ≃ 15%:15%:70%. The laser is pumped with current discharge, through a tube of 1–2m, requiring voltages of 10–20kV and a current of 10–20mA. Glass is opaque at 10µm so transmissive optics are made of NaCl, ZnSe, Ge or other IR materials.

![Diagram of CO$_2$ and N$_2$ vibration levels](image)

The vibration level structure of CO$_2$ and N$_2$ is shown in the figure. The v_1 mode in CO$_2$ is the symmetric stretch vibration (the C atom stationary), the v_2 mode is the bending vibration of the otherwise linear molecule and the v_3 mode is the asymmetric stretch vibration.

The N$_2$ molecule provides an effective pump channel with near resonance with the upper laser level. The energy difference is only 18 cm$^{-1}$ compared to $kT=208$ cm$^{-1}$ at $T = 300$ K. Helium acts as a cooling medium and speeds up the depopulation of the lower levels.

Each of the vibration levels is split into rotation levels marked with a rotation quantum number J. The rotational energy is given with

$$E_{rot} = BJ(J+1)$$

(1)

The energy constant $B \simeq 0.387$ cm$^{-1}$ is inversely proportional to the moment of inertia of the molecule. The J levels communicate fast with each other with a lifetime of only a few nanoseconds, whereas the lifetime of the vibration channels is tens of microseconds. We can therefore assume $T_{rot} = T_{trans}$. The rotational population distribution is given with $N(J) = N_{vibr} f_J$, where

$$f(J) = [(2J+1) \exp(-BJ(J+1)/kT)]/Z_{rot}$$

(2)

Z_{rot} is the partition function for the rotation levels.

Transitions are governed by the selection rules $\Delta J = 0, \pm 1$. Transitions with $\Delta J = +1$ ($J_{lower} - J_{upper}$) are called P–lines, lines with $\Delta J = -1$ R–lines and lines with $\Delta J = 0$ Q–lines. The CO$_2$ laser has only P– and R–lines since for symmetry reasons the upper laser level has only odd J–values and the lower levels only even J–values. The spectral lines are arranged in...
bands Where the R–bands have higher frequency than the P–bands. There is a pair of bands for each of the lower vibration levels. At temperatures relevant to CO$_2$ laser discharge f_J peaks around $J = 20$ and in each band lasing can be achieved at 20–25 lines. The total number of lines is thus 80–100 all in the range of 9–11µm.

Line separation is of the order 50 GHz while linewidths are $\Delta\nu_D = 30$ MHz and $\Delta\nu_L = 30$ MHz. Saturation intensity is of the order 100 W/cm2 which makes the CO$_2$ laser a powerful beast. The saturation intensity can be scaled up with pressure as p^2.