The carbohydrate moiety of serum IgM from Atlantic cod (*Gadus morhua* L.)

Bergljót Magnadóttir
Institute for Experimental Pathology, University of Iceland,
Keldur v. Vesturlandsveg,
IS-112 Reykjavík, Iceland,

Max Crispin, Louise Royle, Cristina Colominas, David J. Harvey, Raymond A. Dwek, Pauline M. Rudd
Glycobiology Institute, Department of Biochemistry, University of Oxford,
South Parks Road,
Oxford, OX1 3QU, U.K.

Nordic Symposium on Fish Immunology, Sundvollen, Norway June 2001
Ig glycoproteins I

• All the immunoglobulin classes are glycosylated

• Several functions have been attributed to the carbohydrate moiety of immunoglobulins

• There are basically 2 types of carbohydrate linkages associated with immunoglobulins:
 N-linked: always NAcGlc to Asp-X-Ser/Thr
 O-linked: commonly NAcGal to Ser/Thr
Ig glycoproteins II

- There are 3 types of N-linked oligosaccharides all with a common trimannosyl-chitobiose core:
 - Complex
 - High mannose
 - Hybrid

- Not all the available Asp-X-Ser/Thr sequons are occupied by a glycan (60 - 70%)

- Those occupied usually carry several but characteristic types of glycans (1 - 16), the protein therefore exists as many glycoforms
The possible glycosylation of cod IgM
Aims of the project

• To analyse the oligosaccharides associated with cod IgM

• To assign a possible functional role to the carbohydrate moiety
Material: Cod serum IgM

- Isolated from pooled sera
- Isolated from 6 individual sera
Analytical methods

• SDS-PAGE analysis before and after PNGase and O-glycanase digestion

• Oligosaccharide sequencing analysis:
 - Glycan release and labelling
 - Normal phase (NP)-HPLC analysis and enzyme arrays

• Other complementary methods used:
 - WAX-HPLC: Weak anion exchange
 - LC/ESMS: Liquid chromatographic/electrospray mass spectrometry
 - MAL-DI-MS: Matrix-assisted laser desorption ionization mass spectrometry
SDS-PAGE of PNGase digested IgM
Oligosaccharide sequencing

Hydrazinolysis or PNGase

N-X-S/T
2AB (2-aminobenzamide)

A3G3FS3(6)(6)(3)

NDVS: α 2-3 sialic acid
ABS: α 2-3 and α 2-6 sialic acid
BTG: galactose
BKF: fucose

N-acetyl glucosamine
Mannose
Galactose
Fucose
Sialic acid
NP-HPLC of 2-AB labelled glycan pool and enzyme arrays

<table>
<thead>
<tr>
<th>aliquote:</th>
<th>Fluorescence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a b<sup>1+2</sup> c d e f g h<sup>1+2</sup> i j k l m n</td>
</tr>
<tr>
<td>2</td>
<td>+ NDV (ii)</td>
</tr>
<tr>
<td>3</td>
<td>A2G2F A2G2 A3G3 A3G3F</td>
</tr>
<tr>
<td>4</td>
<td>A2G0 A2G0F A3G0 A3GOF + ABS (iv) + BTG</td>
</tr>
<tr>
<td>5</td>
<td>A2G0 A3G0 + ABS (v) + BTG + BKF</td>
</tr>
</tbody>
</table>

(i) GU

(ii) + NDV

(iii) + ABS

(iv) + ABS + BTG

(v) + ABS + BTG + BKF

(iii) + ABS

(iv) + ABS + BTG

(v) + ABS + BTG + BKF
A2G2

A2G2S(6)

A3G3

A3G3F

A2G2S2(6)(6)

A2G2FS(6)

A3G3S(6)

A3G3FS(6)

A3G3S2(6)(6)

A3G3FS2(6)(6)

A3G3S3(6)(6)(3)

A3G3FS3(6)(6)(3)

Man 5

Man 6

A2G2F

A3G3S2(6)(6)
The % of different glycans

- 60% contain sialic acid
- 40% contain inner fucose
- 50% are tri-antennary (A3)
- < 3% are oligomannose
Fluorescence

(i) A2G0F + ABS

(ii) A3GOF + NDV

(iii) A2G2F + A3G3 + ABS

(iv) A2G0 + A3G0F + ABS + BTG

(v) A2G0 + A3GOF + ABS + BKF
The A2G0 / A3G0 ratio of individual cod IgM glycans

<table>
<thead>
<tr>
<th>IgM</th>
<th>cod size</th>
<th>temperature</th>
<th>origin/feed</th>
<th>A2G0 / A3G0</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM-1</td>
<td>1.3 kg</td>
<td>1°C</td>
<td>wild/herring-shrimps</td>
<td>1.0</td>
</tr>
<tr>
<td>SM-7</td>
<td>2.2 kg</td>
<td>7°C</td>
<td>wild/herring-shrimps</td>
<td>1.45</td>
</tr>
<tr>
<td>SM-14</td>
<td>3.8 kg</td>
<td>14°C</td>
<td>wild/herring-shrimps</td>
<td>1.77</td>
</tr>
<tr>
<td>SM-S</td>
<td>0.7 kg</td>
<td>7°C</td>
<td>cultured/pellets</td>
<td>0.44</td>
</tr>
<tr>
<td>SM-919</td>
<td>0.7 kg</td>
<td>9°C</td>
<td>cultured/pellets</td>
<td>0.59</td>
</tr>
<tr>
<td>SM-921</td>
<td>0.7 kg</td>
<td>9°C</td>
<td>cultured/pellets</td>
<td>0.30</td>
</tr>
</tbody>
</table>
Analysis of the functional role of the carbohydrate moiety

- Protection against protease digestion
- The effects on the anti-TNP-BSA activity of cod IgM
The carbohydrate moiety and trypsin sensitivity of cod IgM H-chain
The carbohydrate moiety and anti-TNP-BSA activity of cod IgM
Summary

• The carbohydrate moiety of cod IgM is about 10% of the total molecular weight
• Associated with the H-chain, N-linked, complex type
• Some of the five available sites may not be occupied
• Considerable heterogeneity - 16 glycan forms identified
• High % of terminal sialic acid
• Individual variation in the proportion of core extensions (A2/A3)
• Protects against protease digestion
• Partial deglycosylation abolishes anti-TNP-BSA activity
Thanks

• **Technical assistance:**
 √ Sigrún Lange
 √ Anna Ellen Douglas

• **Grants:**
 √ The Icelandic Research Council, Reykjavík
 √ The Research Fund of the University of Iceland
 √ The Biotechnology and Biological Sciences Research Council, U. K.
 √ The Higher Education Funding Council for England