Disc formulas for ω-plurisubharmonic functions

Benedikt Steinar Magnússon

Science Institute
University of Iceland
http://www.hi.is/~bsm

Conference on several complex variables, 2011
in honour of Jósef Siciak
The Poisson disc functional

\[\sup\{u(x); u \in PSH(X), u \leq \varphi\} = \inf \left\{ \int_\mathbb{T} \varphi \circ f \, d\sigma; f \in A_X, f(0) = x \right\} \]

where \(A_X \) is the set of all closed holomorphic discs in \(X \) and \(\sigma \) is the arc length measure on the unit circle \(\mathbb{T} \) normalized to 1.

▶ Poletsky [1993]: \(\varphi \) usc and \(X \) a domain in \(\mathbb{C}^n \)
▶ Lárusson/Sigurdsson [1998,2003] and Rosay [2003]: \(\varphi \) usc and \(X \) any complex manifold
▶ Edigarian [2003]: \(\varphi \) plurisuperharmonic
▶ Drinovec Drnovšek/Forstnerič [2011]: \(\varphi \) usc, \(X \) irreducible complex space
▶ M [2011]: \(\varphi = \varphi_1 - \varphi_2 \), where \(\varphi_1 \) usc and \(\varphi_2 \) psh, \(X \) complex manifold

QUESTION: Is there a similar result for \(\omega \)-psh (quasi-psh) functions?
The Poisson disc functional

\[
\sup\{u(x); u \in PSH(X), u \leq \varphi\} = \inf \left\{ \int_{\mathbb{T}} \varphi \circ f \, d\sigma; f \in \mathcal{A}_X, f(0) = x \right\}
\]

where \(\mathcal{A}_X \) is the set of all closed holomorphic discs in \(X \) and \(\sigma \) is the arc length measure on the unit circle \(\mathbb{T} \) normalized to 1.

▶ Poletsky [1993]: \(\varphi \) usc and \(X \) a domain in \(\mathbb{C}^n \)
▶ Lárusson/Sigurdsson [1998,2003] and Rosay [2003]: \(\varphi \) usc and \(X \) any complex manifold
▶ Edigarian [2003]: \(\varphi \) plurisuperharmonic
▶ Drinovec Drnovšek/Forstnerič [2011]: \(\varphi \) usc, \(X \) irreducible complex space
▶ M [2011]: \(\varphi = \varphi_1 - \varphi_2 \), where \(\varphi_1 \) usc and \(\varphi_2 \) psh, \(X \) complex manifold

QUESTION: Is there a similar result for \(\omega \)-psh (quasi-psh) functions?
The Poisson disc functional

$$\sup \{ u(x); u \in \mathcal{PSH}(X), u \leq \varphi \} = \inf \left\{ \int_{\mathbb{T}} \varphi \circ f \, d\sigma; f \in \mathcal{A}_X, f(0) = x \right\}$$

where \mathcal{A}_X is the set of all closed holomorphic discs in X and σ is the arc length measure on the unit circle \mathbb{T} normalized to 1.

- Poletsky [1993]: φ usc and X a domain in \mathbb{C}^n
- Lárusson/Sigurdsson [1998,2003] and Rosay [2003]: φ usc and X any complex manifold
- Edigarian [2003]: φ plurisuperharmonic
- Drinovec Drnovšek/Forstnerič [2011]: φ usc, X irreducible complex space
- M [2011]: $\varphi = \varphi_1 - \varphi_2$, where φ_1 usc and φ_2 psh, X complex manifold

QUESTION: Is there a similar result for ω-psh (quasi-psh) functions?
ω-settings

- X a complex manifold
- $\omega = \omega_1 - \omega_2$ the difference of two positive closed $(1, 1)$-currents on X
- then we have local potentials $\psi = \psi_1 - \psi_2$ such that $dd^c \psi = \omega$, and ψ_1 and ψ_2 are psh
- let $\text{sing}(\omega) = \bigcup (\psi_1^{-1}(-\infty) \cup \psi_2^{-1}(-\infty))$
ω-settings

- X a complex manifold
- $\omega = \omega_1 - \omega_2$ the difference of two positive closed $(1, 1)$-currents on X
- then we have local potentials $\psi = \psi_1 - \psi_2$ such that $dd^c \psi = \omega$, and ψ_1 and ψ_2 are psh
- let $\text{sing}(\omega) = \bigcup (\psi_1^{-1}(-\infty) \cup \psi_2^{-1}(-\infty))$
\(\omega \)-settings

- \(X \) a complex manifold
- \(\omega = \omega_1 - \omega_2 \) the difference of two positive closed \((1, 1)\)-currents on \(X \)
- then we have local potentials \(\psi = \psi_1 - \psi_2 \) such that \(dd^c \psi = \omega \), and \(\psi_1 \) and \(\psi_2 \) are psh
- let \(\text{sing}(\omega) = \bigcup (\psi_1^{-1}(-\infty) \cup \psi_2^{-1}(-\infty)) \)
\(\omega \)-settings

- \(X \) a complex manifold
- \(\omega = \omega_1 - \omega_2 \) the difference of two positive closed \((1, 1)\)-currents on \(X \)
- then we have local potentials \(\psi = \psi_1 - \psi_2 \) such that \(\ddc \psi = \omega \), and \(\psi_1 \) and \(\psi_2 \) are psh
- let \(\text{sing}(\omega) = \bigcup (\psi_1^{-1}(-\infty) \cup \psi_2^{-1}(-\infty)) \)
ω-psh functions

Definition: A function u is ω-usc if $u + \psi$ is usc for every local potential ψ of ω and $\limsup_{y \to x} u(y) = u(x)$ for $x \in \text{sing}(\omega)$.
ω-psh functions

Definition: A function u is ω-usc if $u + \psi$ is usc for every local potential ψ of ω and $\limsup_{y \to x} u(y) = u(x)$ for $x \in \text{sing}(\omega)$.

Definition: An ω-usc function u is ω-psh if $dd^c u \geq -\omega$, that is $u + \psi$ is psh for every local potential ψ of ω.

Let $\mathcal{PSH}(X, \omega)$ denote the set of ω-psh functions on X.
ω-psh functions

Definition: A function u is ω-usc if $u + \psi$ is usc for every local potential ψ of ω and $\limsup_{y \to x} u(y) = u(x)$ for $x \in \text{sing}(\omega)$.

Definition: An ω-usc function u is ω-psh if $dd^c u \geq -\omega$, that is $u + \psi$ is psh for every local potential ψ of ω.

Let $\mathcal{PSH}(X, \omega)$ denote the set of ω-psh functions on X.

Remark: Whenever the sum of two function is not defined (one is $+\infty$ and the other $-\infty$) we use \limsup.
Connecting ω and A_X

If $f \in A_X$ we define the pullback of ω by f, denoted $f^*\omega$, locally by $\Delta(\psi \circ f)$.
Connecting ω and A_X

If $f \in A_X$ we define the pullback of ω by f, denoted $f^*\omega$, locally by $\Delta(\psi \circ f)$.

Let $R_{f^*\omega}(t) = \int_D \log \left| \frac{t-s}{1-ts} \right| f^*\omega(s)$ be its Riesz potential.
Connecting ω and \mathcal{A}_X

If $f \in \mathcal{A}_X$ we define the *pullback of ω by f*, denoted $f^*\omega$, locally by $\Delta(\psi \circ f)$.

Let $R_{f^*\omega}(t) = \int_{\mathbb{D}} \log \left| \frac{t-s}{1-ts} \right| f^*\omega(s)$ be its Riesz potential.

Proposition: For an ω-usc function u the following is equivalent

- $u \in \mathcal{P}SH(X, \omega)$
- $u \circ f$ is in $\mathcal{S}H(\mathbb{D}, f^*\omega)$ for all $f \in \mathcal{A}_X$
- $u \circ f + R_{f^*\omega}$ is subharmonic for all $f \in \mathcal{A}_X$
Connecting ω and A_X cont.

Assume $\varphi = \varphi_1 - \varphi_2$, where φ_1 is ω_1-usc and φ_2 is psh (in particular φ can be usc).
Connecting ω and A_X cont.

Assume $\varphi = \varphi_1 - \varphi_2$, where φ_1 is ω_1-usc and φ_2 is psh (in particular φ can be usc).

If $u \in PSH(X, \omega)$, $u \leq \varphi$ and $f \in A_X$, $f(0) = x$ then

$$u(f(0)) + R_{f^*\omega}(0) \leq \int_T u \circ f \, d\sigma + \int_T R_{f^*\omega} \, d\sigma$$
Connecting ω and A_X cont.

Assume $\varphi = \varphi_1 - \varphi_2$, where φ_1 is ω_1-usc and φ_2 is psh (in particular φ can be usc).

If $u \in PSH(X, \omega)$, $u \leq \varphi$ and $f \in A_X$, $f(0) = x$ then

$$u(f(0)) + R_{f^*}\omega(0) \leq \int_T u \circ f \, d\sigma + \int_T R_{f^*}\omega \, d\sigma$$

Taking supremum over u, and infimum over f we get

$$\sup \{ u(x); u \in PSH(X, \omega), u \leq \varphi \} \leq \inf \{ -R_{f^*}\omega(0) + \int_T \varphi \circ f \, d\sigma; f \in A_X, f(0) = x \}.$$
Connecting ω and A_X cont.

Assume $\varphi = \varphi_1 - \varphi_2$, where φ_1 is ω_1-usc and φ_2 is psh (in particular φ can be usc).

If $u \in PSH(X, \omega)$, $u \leq \varphi$ and $f \in A_X$, $f(0) = x$ then

$$u(f(0)) + R_{f^*}\omega(0) \leq \int_\mathbb{T} u \circ f \, d\sigma + \int_\mathbb{T} R_{f^*}\omega \, d\sigma$$

that is

$$u(x) \leq -R_{f^*}\omega(0) + \int_\mathbb{T} \varphi \circ f \, d\sigma.$$
Connecting ω and A_X cont.

Assume $\varphi = \varphi_1 - \varphi_2$, where φ_1 is ω_1-usc and φ_2 is psh (in particular φ can be usc).

If $u \in \mathcal{PSH}(X, \omega)$, $u \leq \varphi$ and $f \in A_X$, $f(0) = x$ then

$$u(f(0)) + R_{f^*}\omega(0) \leq \int_T u \circ f \, d\sigma + \int_T R_{f^*}\omega \, d\sigma$$

that is

$$u(x) \leq -R_{f^*}\omega(0) + \int_T \varphi \circ f \, d\sigma.$$

Taking supremum over u, and infimum over f we get

$$\sup\{u(x); u \in \mathcal{PSH}(X, \omega), u \leq \varphi\}$$

$$\leq \inf\{-R_{f^*}\omega(0) + \int_T \varphi \circ f \, d\sigma; f \in A_X, f(0) = x\}.$$
THEOREM: Let X be a complex manifold, $\omega = \omega_1 - \omega_2$ be the difference of two closed positive $(1, 1)$-currents on X, $\varphi = \varphi_1 - \varphi_2$ be the difference of an ω_1-upper semicontinuous function φ_1 and a plurisubharmonic function φ_2. Then the function $\sup\{ u \in \mathcal{P}SH(X, \omega); u \leq \varphi \}$ is ω-plurisubharmonic and for every $x \in X \setminus \text{sing}(\omega)$,

$$
\sup\{ u(x); u \in \mathcal{P}SH(X, \omega), u \leq \varphi \} = \inf\{ -R_f^\ast \omega(0) + \int_T \varphi \circ f \, d\sigma; f \in \mathcal{A}_X, f(0) = x \}.
$$
Main theorem

Theorem: Let X be a complex manifold, $\omega = \omega_1 - \omega_2$ be the difference of two closed positive $(1, 1)$-currents on X, $\varphi = \varphi_1 - \varphi_2$ be the difference of an ω_1-upper semicontinuous function φ_1 and a plurisubharmonic function φ_2. Then the function $\sup\{u \in PSH(X, \omega); u \leq \varphi\}$ is ω-plurisubharmonic and for every $x \in X \setminus \text{sing}(\omega)$,

$$
\sup\{u(x); u \in PSH(X, \omega), u \leq \varphi\}
= \inf\{ -R_{f*}\omega(0) + \int T \varphi \circ f \, d\sigma; f \in \mathcal{A}_X, f(0) = x\}.
$$
Back to the classical case - Corollary

RIESZ DISC FUNCTIONAL: For a given psh function v it has been shown that

$$\sup\{u(x); u \in \mathcal{PSH}(X), dd^c u \geq dd^c v, u \leq 0\}$$

$$= \inf\left\{\frac{1}{2\pi} \int_{\mathbb{D}} \log |\cdot| \Delta(v \circ f); f \in \mathcal{A}_X, f(0) = x\right\}.$$
Back to the classical case - Corollary

RIEsz DISC FUNCTIONAL: For a given psh function v it has been shown that

$$\sup \{ u(x); u \in \mathcal{PSH}(X), dd^c u \geq dd^c v, u \leq 0 \} = \inf \left\{ \frac{1}{2\pi} \int_{\mathbb{D}} \log |\cdot| \Delta(v \circ f); f \in \mathcal{A}_X, f(0) = x \right\}.$$

Letting $\omega = -dd^c v$ in our main theorem we can combine this with the Poisson disc functional,

$$\sup \{ u(x); u \in \mathcal{PSH}(X), dd^c u \geq dd^c v, u \leq \phi \} = \inf \left\{ \frac{1}{2\pi} \int_{\mathbb{D}} \log |\cdot| \Delta(v \circ f) + \int_{\mathbb{T}} \phi \circ f \, d\sigma; f \in \mathcal{A}_X, f(0) = x \right\},$$

where $\phi = \phi_1 - \phi_2$ is the difference of usc function ϕ_1 and a psh function ϕ_2.

Back to the classical case - Corollary

RIESENZ DISC FUNCTIONAL: For a given psh function ν it has been shown that

$$\sup\{u(x); u \in \mathcal{P}SH(X), dd^c u \geq dd^c \nu, u \leq 0\}$$

$$= \inf \left\{ \frac{1}{2\pi} \int_{\mathbb{D}} \log |\cdot| \Delta(\nu \circ f); f \in A_X, f(0) = x \right\}.$$

Letting $\omega = -dd^c \nu$ in our main theorem we can combine this with the Poisson disc functional,

$$\sup\{u(x); u \in \mathcal{P}SH(X, -dd^c \nu), dd^c u \geq dd^c \nu, u \leq \varphi\}$$

$$= \inf \left\{ \frac{1}{2\pi} \int_{\mathbb{D}} \log |\cdot| \Delta(\nu \circ f) + \int_{\mathbb{T}} \varphi \circ f \, d\sigma; f \in A_X, f(0) = x \right\},$$

where $\varphi = \varphi_1 - \varphi_2$ is the difference of usc function φ_1 and a psh function φ_2.
Back to the classical case - Corollary

RIEZS DISC FUNCTIONAL: For a given psh function \(v \) it has been shown that

\[
\sup\{ u(x); u \in \mathcal{PSH}(X), dd^c u \geq dd^c v, u \leq 0 \} = \inf \left\{ \frac{1}{2\pi} \int_{\mathbb{D}} \log |\cdot| \Delta(v \circ f); f \in \mathcal{A}_X, f(0) = x \right\}.
\]

Letting \(\omega = -dd^c v \) in our main theorem we can combine this with the Poisson disc functional,

\[
\sup\{ u(x); u \in \mathcal{PSH}(X, -dd^c v), dd^c u \geq dd^c v, u \leq \varphi \} = \inf \left\{ \frac{1}{2\pi} \int_{\mathbb{D}} \log |\cdot| \Delta(v \circ f) + \int_{\mathbb{T}} \varphi \circ f \, d\sigma; f \in \mathcal{A}_X, f(0) = x \right\},
\]

where \(\varphi = \varphi_1 - \varphi_2 \) is the difference of usc function \(\varphi_1 \) and a psh function \(\varphi_2 \).
Proof

We know that

\[\sup\{u(x); u \in PSH(X, \omega), u \leq \varphi\} \]

\[\leq \inf\{-R_{f^*}\omega(0) + \int_T \varphi \circ f \, d\sigma; f \in \mathcal{A}_X, f(0) = x\} =: \hat{\varphi}, \]
Proof

We know that

$$\sup\{u(x); u \in \mathcal{PSH}(X, \omega), u \leq \varphi\}$$

$$\leq \inf\{-R_{f*}\omega(0) + \int_{T} \varphi \circ f \, d\sigma; f \in \mathcal{A}_X, f(0) = x\} =: \hat{\varphi},$$

so if $\hat{\varphi} \leq \varphi$ and $\hat{\varphi}$ is ω-psh, then it is in the family on the left hand side and we have an equality.
Proof

We know that

\[\sup\{u(x); u \in \mathcal{PSH}(X, \omega), u \leq \varphi\} \]

\[\leq \inf\{-R_{f^*\omega}(0) + \int_T \varphi \circ f \, d\sigma; f \in \mathcal{A}_X, f(0) = x\} \equiv \hat{\varphi}, \]

so if \(\hat{\varphi} \leq \varphi \) and \(\hat{\varphi} \) is \(\omega \)-psh, then it is in the family on the left hand side and we have an equality.

Now if \(f_x \) is the constant disc which maps everything to \(x \in X \), then by the definition of the envelope

\[\hat{\varphi}(x) \leq -R_{f_x^*\omega}(0) + \int_T \varphi \circ f_x \, d\sigma = \varphi(x) \]
Proof

We know that

$$\sup\{u(x); u \in PSH(X, \omega), u \leq \varphi\}$$

$$\leq \inf\{-R_{f^*}(0) + \int_T \varphi \circ f \, d\sigma; f \in \mathcal{A}_X, f(0) = x\} =: \hat{\varphi},$$

so if $\hat{\varphi} \leq \varphi$ and $\hat{\varphi}$ is ω-psh, then it is in the family on the left hand side and we have an equality.

Now if f_x is the constant disc which maps everything to $x \in X$, then by the definition of the envelope

$$\hat{\varphi}(x) \leq -R_{f_x^*}(0) + \int_T \varphi \circ f_x \, d\sigma = \varphi(x)$$

The hard part is to show that the $\hat{\varphi}$ is ω-psh
Proof in the case of a global potential

Assume there is a function $\psi = \psi_1 - \psi_2$ on X such that $dd^c\psi = \omega$.
Proof in the case of a global potential

Assume there is a function $\psi = \psi_1 - \psi_2$ on X such that $dd^c \psi = \omega$. Then for $f \in A_X$, $f(0) = x$, by the Riesz rep. formula

$$\psi(f(0)) = R_{f^* \omega}(0) + \int_T \psi \circ f \, d\sigma,$$
Proof in the case of a global potential

Assume there is a function $\psi = \psi_1 - \psi_2$ on X such that $dd^c \psi = \omega$. Then for $f \in \mathcal{A}_X$, $f(0) = x$, by the Riesz rep. formula

$$\psi(f(0)) = R_{f^*} \omega(0) + \int_{\mathbb{T}} \psi \circ f \, d\sigma,$$

and then we can show that $\hat{\varphi}$ is ω-psh because

$$\hat{\varphi}(x) + \psi(x) = \inf \left\{ -R_{f^*} \omega(0) + \int_{\mathbb{T}} \varphi \circ f \, d\sigma ; f \in \mathcal{A}_X, f(0) = x \right\} + \psi(x)$$
Proof in the case of a global potential

Assume there is a function $\psi = \psi_1 - \psi_2$ on X such that $dd^c \psi = \omega$. Then for $f \in \mathcal{A}_X$, $f(0) = x$, by the Riesz rep. formula

$$\psi(f(0)) = R_{f^*}\omega(0) + \int_{\mathcal{T}} \psi \circ f \, d\sigma,$$

and then we can show that $\hat{\phi}$ is ω-psh because

$$\hat{\phi}(x) + \psi(x) = \inf \left\{ -R_{f^*}\omega(0) + \int_{\mathcal{T}} \phi \circ f \, d\sigma; f \in \mathcal{A}_X, f(0) = x \right\} + \psi(x)$$

$$= \inf \left\{ -R_{f^*}\omega(0) + \int_{\mathcal{T}} \phi \circ f \, d\sigma + R_{f^*}\omega(0) + \int_{\mathcal{T}} \psi \circ f \, d\sigma; f \in \mathcal{A}_X, f(0) = x \right\}$$
Proof in the case of a global potential

Assume there is a function $\psi = \psi_1 - \psi_2$ on X such that $dd^c \psi = \omega$. Then for $f \in \mathcal{A}_X$, $f(0) = x$, by the Riesz rep. formula

$$\psi(f(0)) = R_{f^*}\omega(0) + \int_T \psi \circ f \, d\sigma,$$

and then we can show that $\hat{\phi}$ is ω-psh because

$$\hat{\phi}(x) + \psi(x) = \inf \{- R_{f^*}\omega(0) + \int_T \varphi \circ f \, d\sigma; f \in \mathcal{A}_X, f(0) = x\} + \psi(x)$$

$$= \inf \{- R_{f^*}\omega(0) + \int_T \varphi \circ f \, d\sigma + R_{f^*}\omega(0) + \int_T \psi \circ f \, d\sigma; f \in \mathcal{A}_X, f(0) = x\}$$

$$= \inf \{ \int_T (\varphi + \psi) \circ f \, d\sigma; f \in \mathcal{A}_X, f(0) = x\}$$
Proof in the case of a global potential

Assume there is a function $\psi = \psi_1 - \psi_2$ on X such that $dd^c \psi = \omega$. Then for $f \in \mathcal{A}_X$, $f(0) = x$, by the Riesz rep. formula

$$\psi(f(0)) = R_{f^*\omega}(0) + \int_{\mathbb{T}} \psi \circ f \, d\sigma,$$

and then we can show that $\hat{\phi}$ is ω-psh because

$$\hat{\phi}(x) + \psi(x) = \inf\{-R_{f^*\omega}(0) + \int_{\mathbb{T}} \varphi \circ f \, d\sigma; f \in \mathcal{A}_X, f(0) = x\} + \psi(x)$$

$$= \inf\{-R_{f^*\omega}(0) + \int_{\mathbb{T}} \varphi \circ f \, d\sigma + R_{f^*\omega}(0) + \int_{\mathbb{T}} \psi \circ f \, d\sigma; f \in \mathcal{A}_X, f(0) = x\}$$

$$= \inf\{ \int_{\mathbb{T}} (\varphi + \psi) \circ f \, d\sigma; f \in \mathcal{A}_X, f(0) = x\}$$

This function is psh since $\varphi + \psi = (\varphi + \psi_1) - \psi_2$ is the difference of an usc function and a plurisubharmonic function.
Proof in the general case

We can prove that the envelope \(\hat{\varphi} \) is \(\omega \)-psh by showing that it satisfies a sub-average property for analytic discs.

\[
(\hat{\varphi} + \psi)(f(0)) \leq \int_{\mathbb{T}} (\hat{\varphi} + \psi) \circ f \, d\sigma.
\]
Proof in the general case

We can prove that the envelope $\hat{\phi}$ is ω-psh by showing that it satisfies a sub-average property for analytic discs.

$$(\hat{\phi} + \psi)(f(0)) \leq \int_{\mathcal{T}} (\hat{\phi} + \psi) \circ f \, d\sigma.$$

That is, for $\varepsilon > 0$ there exists a disc g such that $g(0) = f(0)$ and

$$(\hat{\phi} + \psi)(f(0)) \leq -R_{g^*\omega}(0) + \int_{\mathcal{T}} \phi \circ g \, d\sigma \leq \int_{\mathcal{T}} (\hat{\phi} + \psi) \circ f \, d\sigma + \varepsilon.$$
Proof in the general case

We can prove that the envelope $\hat{\phi}$ is ω-psh by showing that it satisfies a sub-average property for analytic discs.

$$(\hat{\phi} + \psi)(f(0)) \leq \int_\mathcal{T} (\hat{\phi} + \psi) \circ f \, d\sigma.$$

That is, for $\varepsilon > 0$ there exists a disc g such that $g(0) = f(0)$ and

$$(\hat{\phi} + \psi)(f(0)) \leq -R_g*\omega(0) + \int_\mathcal{T} \varphi \circ g \, d\sigma \leq \int_\mathcal{T} (\hat{\phi} + \psi) \circ f \, d\sigma + \varepsilon.$$

To find g we embedd a ”big enough” part of X into $X \times \mathbb{C}^2$ and show that there we have a global potential.
Proof in the general case

We can prove that the envelope \(\hat{\varphi} \) is \(\omega \)-psh by showing that it satisfies a sub-average property for analytic discs.

\[
(\hat{\varphi} + \psi)(f(0)) \leq \int_{T} (\hat{\varphi} + \psi) \circ f \, d\sigma.
\]

That is, for \(\varepsilon > 0 \) there exists a disc \(g \) such that \(g(0) = f(0) \) and

\[
(\hat{\varphi} + \psi)(f(0)) \leq -R_g^* \omega(0) + \int_{T} \varphi \circ g \, d\sigma \leq \int_{T} (\hat{\varphi} + \psi) \circ f \, d\sigma + \varepsilon.
\]

To find \(g \) we embedd a "big enough" part of \(X \) into \(X \times \mathbb{C}^2 \) and show that there we have a global potential.

Since we have a global potential on this subset in \(X \times \mathbb{C}^2 \) the corresponding envelope there is \(\omega \)-psh and we have a "good disc" \(\tilde{g} \) in \(X \times \mathbb{C}^2 \). The disc \(g = \pi \circ \tilde{g} \) is then the disc we are looking for.
\(\omega \)-Reduction theorem

Let \(X \) be a complex manifold, \(H \) a disc functional on \(A_X \) and \(\omega = \omega_1 - \omega_2 \) the difference of two positive, closed \((1, 1)\)-currents on \(X \). The envelope \(EH \) is \(\omega \)-plurisubharmonic if it satisfies the following.

(i) \(E\Phi^*H \) is \(\Phi^*\omega \)-plurisubharmonic for every holomorphic submersion \(\Phi \) from a complex manifold where \(\Phi^*\omega \) has a global potential.

(ii) There is an open cover of \(X \) by subsets \(U \), with \(\omega \)-pluripolar subsets \(Z \subset U \) and local potentials \(\psi \) on \(U \), \(\psi^{-1}(\{-\infty\}) \subset Z \), such that for every \(h \in A_U \) with \(h(\overline{D}) \not\subset Z \), the function \(t \mapsto (H(h(t)) + \psi(h(t)))^{\dagger} \) is dominated by an integrable function on \(\mathbb{T} \).

(iii) If \(h \in A_X \), \(h(0) \not\in \text{sing}(\omega) \), \(t_0 \in \mathbb{T} \setminus h^{-1}(\text{sing}(\omega)) \) and \(\varepsilon > 0 \), then \(t_0 \) has a neighbourhood \(U \) in \(\mathbb{C} \) and there is a local potential \(\psi \) in a neighbourhood of \(h(U) \) such that for all sufficiently small arcs \(J \) in \(\mathbb{T} \) containing \(t_0 \) there is a holomorphic map \(F : D_r \times U \to X \), \(r > 1 \), such that \(F(0, \cdot) = h|_U \) and