Theoretical Calculations of Electrochemical Ammonia Synthesis at Ambient Pressure and Temperature

Egill Skúlason1,2, Thomas Bligaard1,2, Jan Rossmeisl2, Áshildur Logadóttir2, Jens K. Nørskov2, Hannes Jónsson1

1Science Institute, University of Iceland, Dunhagi 3, VR-II, 107 Reykjavik, Iceland
2CAMP, NanoDTU, Department of Physics, Building 307, Technical University of Denmark, DK-2800 Lyngby, Denmark
Contents

• Ammonia Synthesis (AS)
 – Industrial vs. Biological
 – Why another AS method?
 – Formation of NH₃ in Electrochemical Cell

• Methodology
 – Density Functional Theory (DFT)
 – Free Energy and Electrochemical Model

• Results & Discussions
 – AS in Electrochemical Cell
 – Stability of Intermediates
 – Hydrogen Evolution Reaction (HER)
 – Experiments on Electrochemical AS

• Further Studies & Conclusions
Industrial Ammonia Synthesis

Haber-Bosch Method

Dissociative Mechanism

\[\text{N}_2 + 3\text{H}_2 \rightarrow 2\text{NH}_3 \]

40 x 10^6 tonnes/year

430 °C

150 atm.

Biological Ammonia Synthesis

Associative Mechanism

\[\text{N}_2 + 8\text{H}^+ + 8\text{e}^- \rightarrow 2\text{NH}_3 + \text{H}_2 \]

16 ATP → 16 ADP + 16 P_i + 5 eV

20 °C

1 atm.

Why another AS method?

• The Haber-Bosch process
 – High pressure and temperature
 – Large-scale chemical plants

• Worldwide regulations for NO$_x$ emission
 – Ammonia expected to be a reductant of NO$_x$ emitted from ships and stationary facilities
 – Ammonia synthesis on a small-scale under mild condition
Can we produce ammonia with a mechanism similar to that of Nitrogen fixing enzymes?
Contents

• Ammonia Synthesis (AS)
 – Industrial vs. Biological
 – Why another AS method?
 – Formation of NH$_3$ in Electrochemical Cell

• Methodology
 – Density Functional Theory (DFT)
 – Free Energy and Electrochemical Model

• Results & Discussions
 – AS in Electrochemical Cell
 – Stability of Intermediates
 – Hydrogen Evolution Reaction (HER)
 – Experiments on Electrochemical AS

• Further Studies & Conclusions
Density Functional Theory (DFT)

• **DFT**
 – *ab initio* method
 – Solves the Schrödinger equation
 – Hohenberg-Kohn theorem (1964)
 – Total energy of a quantum mechanical electron gas is a unique functional of its density $r(r)$
 – Code: *Dacapo* from CAMP

• **Valence electrons**
 – Expanded in plane wave basis set
 – Includes periodic boundary conditions

• **Vanderbilt pseudopotential**
 – The nucleus
 – The core electrons
Free Energy Calculations

DFT energy values converted into free energy values:

\[\Delta G = \Delta E_{\text{DFT}} + \Delta (ZPE) - T \Delta S \]

ZPE and S: from vibrational frequency calculations in DFT or taken from handbooks of gas phase molecules.

The energy levels of a harmonic oscillator:

\[E_\nu = (\nu + 1/2)\hbar \omega \quad \omega = (k/m)^{1/2} \quad \nu = 0, 1, 2, \ldots \]

⇒ ZPE: \[E_0 = 1/2\hbar \omega \]

\[S = Nk\{\frac{\beta \varepsilon}{(e^{\beta \varepsilon} - 1)} - \ln(1-e^{-\beta \varepsilon})\} \quad \beta \varepsilon = \frac{hc\nu}{kT} \]
Electrochemical Model

- Calculate the free energy at zero potential, $\Delta G(0)$.
- Then the number (n) of electrons (with the elementary charge $-e$), multiplied with the cell potential (U), is added to $\Delta G(0)$:

$$\Delta G(U) = \Delta G(0) + nU$$

- All states involving an electron will simply be shifted in free energy by nU due to the external potential.

Contents

• Ammonia Synthesis (AS)
 – Industrial vs. Biological
 – Why another AS method?
 – Formation of NH₃ in Electrochemical Cell

• Methodology
 – Density Functional Theory (DFT)
 – Free Energy and Electrochemical Model

• Results & Discussions
 – AS in Electrochemical Cell
 – Stability of Intermediates
 – Hydrogen Evolution Reaction (HER)
 – Experiments on Electrochemical AS

• Further Studies & Conclusions
Possible Formation of NH₃ in Electrochemical Cell

First Step: N₂ Adsorbs on Surface Electrode

\[\text{Cathode: } N_2 + 6H^+ + 6e^- \rightarrow 2NH_3 \]

\[\text{Anode: } H_2 \leftrightarrow 2H^+ + 2e^- \]
Possible Formation of NH₃ in Electrochemical Cell

Second Step: A Proton is Transferred from the Electrolyte and an Electron from the Cathode to N₂

Cathode

N₂ + 6H⁺ + 6e⁻ → 2NH₃

Anode

H₂ ↔ 2H⁺ + 2e⁻
Possible Formation of NH₃ in Electrochemical Cell

Last Step: After Adding 6H⁺ and 6e⁻ to N₂, 2NH₃ is formed

\[\text{Anode} \]
\[\text{Cathode} \]
\[N_2 + 6H^+ + 6e^- \rightarrow 2NH_3 \]

\[\text{H}_2 \leftrightarrow 2H^+ + 2e^- \]
Ammonia Synthesis

Free Energy Diagram at 300 K

ΔG = ΔE_{DFT} + Δ(ZPE) - TΔS

Associative Mechanism

Ru(0001) surface
AS in Electrochemical Cell

Free Energy at 300 K and -1.07 V vs. SHE

\[\Delta G = \Delta E_{\text{DFT}} + \Delta(ZPE) - T\Delta S \]

Anode: \(\text{H}_2 \leftrightarrow 2\text{H}^+ + 2\text{e}^- \)

Cathode: \(\text{N}_2 + 6\text{H}^+ + 6\text{e}^- \leftrightarrow 2\text{NH}_3 \)

Over all: \(\text{N}_2 + 3\text{H}_2 \leftrightarrow 2\text{NH}_3 \)

\[\Delta G(U) = \Delta G(0) + eU \]

\(\text{pH} = 0 \)

Ru(0001) surface
Stability of Intermediates

Ru(0001) surface
T = 300 K, pH = 0

\[\Delta G(U) = \Delta G(0) + eU \]
The Electrochemical System

Cathode: \[N_2 + 6H^+ + 6e^- \leftrightarrow 2NH_3 \]

Anode: \[H_2 \leftrightarrow 2H^+ + 2e^- \]
Hydrogen Coverage on the Electrode Surface

Cathode: $\text{N}_2 + 8\text{H}^+ + 8\text{e}^- \leftrightarrow 2\text{NH}_3 + \text{H}_2$

Anode: $\text{H}_2 \leftrightarrow 2\text{H}^+ + 2\text{e}^-$
Hydrogen Evolution on the Electrode Surface

Cathode

\[\text{N}_2 + 8\text{H}^+ + 8\text{e}^- \leftrightarrow 2\text{NH}_3 + \text{H}_2 \]

Anode

\[\text{H}_2 \leftrightarrow 2\text{H}^+ + 2\text{e}^- \]
Hydrogen Evolution on the Electrode Surface

Cathode

\[\text{N}_2 + 8\text{H}^+ + 8\text{e}^- \leftrightarrow 2\text{NH}_3 + \text{H}_2 \]

Anode

\[\text{H}_2 \leftrightarrow 2\text{H}^+ + 2\text{e}^- \]
Experiments on Electrochemical AS

\[\frac{3}{2} \text{H}_2 + \text{N}^3- \rightarrow \text{NH}_3 + 3\text{e}^- \quad \text{1/2 \ N}_2 + 3\text{e}^- \rightarrow \text{N}^3- \]

Over all: \[\frac{1}{2} \text{N}_2 + \frac{3}{2} \text{H}_2 \rightarrow \text{NH}_3 \]

Current efficiency: 72%
Potential: 0.48 V (vs. Li+/Li)
Li+/Li: -3.04 V vs. SHE

Contents

• Ammonia Synthesis (AS)
 – Industrial vs. Biological
 – Why another AS method?
 – Formation of NH₃ in Electrochemical Cell

• Methodology
 – Density Functional Theory (DFT)
 – Free Energy and Electrochemical Model

• Results & Discussions
 – AS in Electrochemical Cell
 – Stability of Intermediates
 – Hydrogen Evolution Reaction (HER)
 – Experiments on Electrochemical AS

• Further Studies & Conclusions
Further Studies

- Finish calculation of the electrochemical ammonia synthesis on a step of the Ru(0001) surface.
- Understand the hydrogen evolution process and find some ways to stop it in the electrochemical ammonia synthesis.
Further Studies

- Apply external electric potential in the calculations
Further Studies

- Apply external electric potential in the calculations
- Calculate the stability of the intermediates
Further Studies

- Apply external electric potential in the calculations
- Calculate the stability of the intermediates
Further Studies

Electron Density Changes due to External Electric Potential Calculated with DFT
Conclusions

• Our electronic structure calculations predict that it could be possible to electrochemically produce ammonia under ambient reaction conditions.
• Apply a negative voltage on the order of 1.07 V to an electrochemical cell.
• The HER is needed to be suppressed.