Supervised Learning Linear Composite Dispatch
Rules for Scheduling
Case study for JSP and PFSP

Helga Ingimundardóttir
Thomas Philip Runarsson

University of Iceland

April 22nd, 2013
Outline

Introduction

Job Shop Scheduling

Preference models

Evolutionary search with CMA-ES

Experiments

Summary and conclusions
Introduction

Job Shop Scheduling

Preference models

Evolutionary search with CMA-ES

Experiments

Summary and conclusions
Motivation

General Goal

- General goal is how to search for *good* solutions for an arbitrary problem domain.
- Automate the design of optimization algorithms.
- Use of randomly sampled problem instances and their corresponding optimal vs. suboptimal solutions.
Case Study: JSP and PFSP

Abstract

- Framework for creating dispatching rules for JSP and PFSP.
- Supervised learning based on optimal and sub-optimal solutions.
- Training data is randomly generated problem instances and their optimal solutions. Method is purely data-driven.
- Linear classification to identify good dispatches from worse ones.
- Robust for higher dimensions.

Keywords: Scheduling ● Composite dispatching rules ● JSP ● PFSP ● Generating training data ● Sampling ● Ranking ● Scalability ● Ordinial Regression ● Evolutionary Search
Introduction

Job Shop Scheduling

Preference models

Evolutionary search with CMA-ES

Experiments

Summary and conclusions
Job Shop Scheduling (1)

JSP

Simple job shop scheduling problem is where \(n \) jobs are scheduled on a set of \(m \) machines, subject to constraints:

- each job must follow a predefined machine order,
- that a machine can handle at most one job at a time.

Objective: schedule the jobs so as to minimize the maximum completion time, i.e. makespan, \(C_{\text{max}} \).

PFSP

Permutation flow shop scheduling is the same as JSP except the predefined machine order is homogeneous for all jobs.
Problem space distributions used in experimental studies

<table>
<thead>
<tr>
<th>type</th>
<th>name</th>
<th>size ((n \times m))</th>
<th>(N_{\text{train}})</th>
<th>(N_{\text{test}})</th>
<th>note</th>
</tr>
</thead>
<tbody>
<tr>
<td>JSP</td>
<td>(P_{6 \times 5}^{\text{jrnd}})</td>
<td>(6 \times 5)</td>
<td>500</td>
<td>500</td>
<td>random</td>
</tr>
<tr>
<td></td>
<td>(P_{6 \times 5}^{\text{jrndn}})</td>
<td>(6 \times 5)</td>
<td>500</td>
<td>500</td>
<td>random-narrow</td>
</tr>
<tr>
<td></td>
<td>(P_{10 \times 10}^{\text{jrnd}})</td>
<td>(10 \times 10)</td>
<td>–</td>
<td>500</td>
<td>random</td>
</tr>
<tr>
<td></td>
<td>(P_{10 \times 10}^{\text{jrndn}})</td>
<td>(10 \times 10)</td>
<td>–</td>
<td>500</td>
<td>random-narrow</td>
</tr>
<tr>
<td>PFSP</td>
<td>(P_{6 \times 5}^{\text{frnd}})</td>
<td>(6 \times 5)</td>
<td>500</td>
<td>500</td>
<td>random</td>
</tr>
<tr>
<td></td>
<td>(P_{6 \times 5}^{\text{frndn}})</td>
<td>(6 \times 5)</td>
<td>500</td>
<td>500</td>
<td>random-narrow</td>
</tr>
<tr>
<td></td>
<td>(P_{6 \times 5}^{\text{fjc}})</td>
<td>(6 \times 5)</td>
<td>500</td>
<td>500</td>
<td>job-correlated</td>
</tr>
<tr>
<td></td>
<td>(P_{10 \times 10}^{\text{frnd}})</td>
<td>(10 \times 10)</td>
<td>–</td>
<td>500</td>
<td>random</td>
</tr>
<tr>
<td></td>
<td>(P_{10 \times 10}^{\text{frndn}})</td>
<td>(10 \times 10)</td>
<td>–</td>
<td>500</td>
<td>random-narrow</td>
</tr>
<tr>
<td></td>
<td>(P_{10 \times 10}^{\text{fjc}})</td>
<td>(10 \times 10)</td>
<td>–</td>
<td>500</td>
<td>job-correlated</td>
</tr>
</tbody>
</table>
Job Shop Scheduling (3)

Simple Priority Dispatching Rules

- frnd
- frndn
- fjc
- jrnd
- jrndn

Percentage relative deviation from optimality, \(\rho \) (%)

Density

SDR, MWR, LWR, SPT, LPT
Dispatching rules (DR) for constructing JSSP

- Starts with an empty schedule and adds on one job at a time.
- When a machine is free the DR inspects the waiting/available jobs and selects the job with the highest priority.
- Complete schedule consists of $\ell = n \times m$ sequential dispatches.
- At each dispatch k features $\phi(k)$ for the temporal schedule are calculated.
- Performance of DR is compared with its optimal makespan, as percentage relative deviation from optimality: $\rho = \frac{C_{\text{max}}^{\text{DR}} - C_{\text{opt}}^{\text{max}}}{C_{\text{opt}}^{\text{max}}} \cdot 100\%$
Job Shop Scheduling (5)

Features for JSSP

<table>
<thead>
<tr>
<th>(\phi)</th>
<th>Feature description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\phi_1)</td>
<td>processing time for job on machine</td>
</tr>
<tr>
<td>(\phi_2)</td>
<td>start-time</td>
</tr>
<tr>
<td>(\phi_3)</td>
<td>end-time</td>
</tr>
<tr>
<td>(\phi_4)</td>
<td>when machine is next free</td>
</tr>
<tr>
<td>(\phi_5)</td>
<td>current makespan</td>
</tr>
<tr>
<td>(\phi_6)</td>
<td>work remaining</td>
</tr>
<tr>
<td>(\phi_7)</td>
<td>most work remaining</td>
</tr>
<tr>
<td>(\phi_8)</td>
<td>slack time for this particular machine</td>
</tr>
<tr>
<td>(\phi_9)</td>
<td>slack time for all machines</td>
</tr>
<tr>
<td>(\phi_{10})</td>
<td>slack time weighted w.r.t. number of operations already assigned</td>
</tr>
<tr>
<td>(\phi_{11})</td>
<td>time job had to wait</td>
</tr>
<tr>
<td>(\phi_{12})</td>
<td>size of slot created by assignment</td>
</tr>
<tr>
<td>(\phi_{13})</td>
<td>total processing time for job</td>
</tr>
</tbody>
</table>
A schedule being built at step $k = 16$. The dashed boxes represent five different possible jobs that could be scheduled next using a DR.
Introduction

Job Shop Scheduling

Preference models

Evolutionary search with CMA-ES

Experiments

Summary and conclusions
Ordinal Regression (1)

Preference learning problem

Specified by a set of preference pairs:

\[S = \left\{ \left\{ z_0, +1 \right\}, \left\{ z_s, -1 \right\} \right\}_{k=1}^{\ell} \mid \forall o \in O^{(k)}, s \in S^{(k)} \}
\subset \Phi \times Y \]

where the set of point/rank pairs are:

- Optimal decision: \(z_o = \phi(o) - \phi(s) \), ranked +1
- Sub-optimal decision: \(z_s = \phi(s) - \phi(o) \), ranked -1
Ordinal Regression (2)

- Mapping of points to ranks: \(\{h(\cdot) : \Phi \mapsto Y\} \) where
 \[
 \phi_o \succ \phi_s \iff h(\phi_o) > h(\phi_s)
 \]

- The preference is defined by a linear function, i.e. PREF model:
 \[
 h(\phi) = \sum_{i=1}^{d} w_i \phi = \langle w \cdot \phi \rangle.
 \]

- Logistic regression learns the optimal parameters \(w \) by solving:
 \[
 \min_w \quad \frac{1}{2} \langle w \cdot w \rangle + C \sum_{j=1}^{|S|} \log \left(1 + e^{-y_j \langle w \cdot z_j \rangle} \right)
 \]
Generating preference set S (1)

A separate DR for each dispatch iteration

- At each dispatch k a number of data pairs are created
 - for each of the N_{train} problem instance created.
- Deliberately create a separate data set for each dispatch
 - Resulting in ℓ linear scheduling rules for solving a $n \times m$ JSSP.

Defining the size of the training set as $l = |\Phi|$, gives the size of the preference set as $|S| = 2l$.

- If l is too large, than sampling needs to be done.
Generating preference set S (2)

Previous sampling approach

The strategy was to follow some single optimal job $j \in \mathcal{O}^{(k)}$, thus creating $|\mathcal{O}^{(k)}| \cdot |S^{(k)}|$ feature pairs at each dispatch k, resulting in a training size of:

$$I = \sum_{q=1}^{N_{\text{train}}} \left(\sum_{k=1}^{\ell} |\mathcal{O}^{(k)}| \cdot |S^{(k)}| \right)$$

For the data distribution considered there, this simple sampling was sufficient for a favourable outcome. However for a considerably harder data distribution this strategy did not work well.

Trajectory sampling strategies explored for S,
Generating preference set S (3)

<table>
<thead>
<tr>
<th>S^{opt}</th>
<th>follow some (random) optimal task</th>
</tr>
</thead>
<tbody>
<tr>
<td>S^{cma}</td>
<td>follow the task corresponding to highest priority, computed with fixed weights w, which were obtained by optimising with CMA-ES.</td>
</tr>
<tr>
<td>S^{mwr}</td>
<td>follow the SDR most work remaining (MWR).</td>
</tr>
<tr>
<td>S^{lwr}</td>
<td>similar to S^{mwr} except for least work remaining (LWR).</td>
</tr>
<tr>
<td>S^{all}</td>
<td>union of all of the above.</td>
</tr>
</tbody>
</table>
Introduction

Job Shop Scheduling

Preference models

Evolutionary search with CMA-ES

Experiments

Summary and conclusions
Evolutionary search

Instead of using logistic regression for to find the weights w for linear preference function:

$$h(\phi) = \sum_{i=1}^{d} w_i \phi = \langle w \cdot \phi \rangle.$$

a widely-used evolutionary algorithm, Covariance Matrix Adaptation Evolution Strategy (CMA-ES), is applied to directly minimise the expected relative error, i.e. $\mathbb{E}[\rho]$ (note, could also minimise $\mathbb{E}[C_{\text{max}}]$)

Benefit No need to collect preference set S

Drawback Computationally expensive to evaluate $\mathbb{E}[\rho]$
Introduction

Job Shop Scheduling

Preference models

Evolutionary search with CMA-ES

Experiments

Summary and conclusions
Experiments (1)

Size of preference set S

![Graph showing the size of preference set S for different scenarios and tracks over steps k.]
Experiments (2)

Linear PREF models and CMA-ES obtained weights

![Graph showing percentage relative deviation from optimality for different models]
Introduction

Job Shop Scheduling

Preference models

Evolutionary search with CMA-ES

Experiments

Summary and conclusions
Summary and conclusions (1)

- Introduced a framework for learning linear composite dispatch rules for scheduling.
- The approaches find linear weights by either direct optimisation with CMA-ES or via preference learning by collecting preference pairs whilst sampling the state space of the schedule strategically.
Summary and conclusions (2)

CMA-ES optimisation

Benefits:
• Does not rely on optimal solutions
• Scalable

Drawbacks:
• Computationally expensive.
• Limited to linear preference function \(h(\cdot) \)

Future Work:
• Mediate evolutionary search by use of surrogate models which indirectly estimate mean expected error w.r.t. current population without a loss in performance
PREF models

Benefits:
• Scalable
• Robust to different data distributions

Drawbacks:
• Must know the optimal solution of the problem a priori to correctly classify optimal decisions from suboptimal ones

Future work:
• Easily adaptable to non-linear preferences function, i.e. project the feature space onto a higher dimension thereby updating $h(\cdot)$ to a kernel based function which should yield lower expected C_{max}
Thank you for your attention

Questions?

Helga Ingimundardóttir, hei2@hi.is