Early Weichselian palaeoenvironments reconstructed from a mega-scale thrust-fault complex, Kanin Peninsula, northwestern Russia

EILIV LARSEN, KURT H. KJÆR, MARIA JENSEN, IGOR N. DEMIDOV, LENA HÅKANSSON AND AAGE PAUS

In this study, we take advantage of superbly exposed sections on the northern coast of the Kanin Peninsula, northwest Russia to make a detailed reconstruction of sedimentary environments prior to mega-scale glacial dislocation. The latter can be traced over 20–40 km, a feature otherwise only known from marine seismic studies on continental shelves; for instance, the Barents shelf to the north of the Kanin Peninsula, northwestern Russia. The diamicts represent multiple glacial advances by the Barents Sea and the Kara Sea ice sheets during the Weichselian. The diamicts and stratigraphically older lacustrine, fluvial and shallow marine sediments have been thrust as nappes by the Barents Sea and Kara Sea ice sheets. Based on stratigraphic position, OSL dating, sea level information and pollen, it is evident that the sorted sediments were deposited in the Late Eemian–Early Weichselian. Sedimentation started in lake basins and continued in shallow marine embayments when the lakes opened to the sea. The observed transition from lacustrine to shallow marine sedimentation could represent coastal retreat during stable or rising sea level.

The cliffs on the north coast of the Kanin Peninsula have been investigated previously (Ramsey 1904; Spiridonov & Yakovleva 1961). At the time of the two earliest investigations (Ramsey 1904; Spiridonov & Yakovleva 1961) the coastline must have been situated more than 300 m further offshore than it is today. Nevertheless, the findings are strikingly similar to those of the present study.

Setting

The study area is situated on the northern coast of the Kanin Peninsula (Fig. 1). The northern part of Kanin appears as a plateau ridge. This upland has an average altitude of 150 m a.s.l., reaching a maximum of 241 m, and is a direct continuation of the NW–SE striking Timan Ridge further to the southeast (Fig. 1). From the northern coast of Kanin the terrain rises gently towards the southwest. The bedrock topography is smoothened by Quaternary overburden, reaching a thickness of at least 80 m as measured in the exposures.

DOI 10.1080/03009480600781925 © 2006 Taylor & Francis
No bedrock is exposed. Diamict sediments crop out on high ground as indicated by scattered erratics. Lacustrine sediments and peat are widespread in the lower areas. Fluvial terraces are found along the rivers. The north coast of Kanin faces the open Barents Sea. High-energy waves and thawing of the permafrozen sediments cause a rapid cliff retreat giving unique exposure (Fig. 2). Investigations were concentrated along a 20-km-long cliff section between the rivers Madakhá and Krinka (Fig. 1). The cliff is 40 to 80 m high and dissected by narrow gullies occupied by minor rivers. The section continues both to the east and west for at least another 10–20 km.

Methods

Major lithological boundaries were identified on a photo mosaic at a scale approximately 1:600, and used for verifications and corrections in the field. Distances along the coast were measured by GPS with an accuracy of about 5 m. Elevations were measured using a hand-held altimeter (accuracy about 0.5 m) from the high-tide sea level.

The principles of architectural element analyses for sediments (Miall 1988; Boyce & Eyles 2000) were applied. These emphasize the description of lithological assemblages by defining their bounding surfaces. Recently, this methodology has proved to be an effective tool for understanding the three-dimensional distribution of glacial deposits such as tills and associated sorted sediments. An architectural element can be regarded as a three-dimensional body of genetically related sediment acting as a building block in a stratigraphic succession. Applied to glacial deposits, at least two principal types of architectural elements are defined — diamict elements (DE) and interbeds (I).

Sections along the cliff were logged using a vertical resolution between 1:10 and 1:100. Sorted sediments were divided into sedimentary facies based on grain size, sorting, rounding and primary sedimentary structures (e.g. Eyles et al. 1983). Diamict sediments were described and classified according to the scheme of Krüger & Kjær (1999). Clast fabrics were measured for elongated clasts with an a/b ratio of at least 1.5 and with an a-axis length ranging from 1 to 10 cm. Each clast fabric analysis consists of 25 observations and these were stereographically plotted on the lower hemisphere of a Lambert projection.

Age estimates were obtained by the optically stimulated luminescence (OSL) technique (Table 1). Samples from sorted sediments were collected using plastic tubes (5 cm diameter and 30 cm long) and later analysed at the Nordic Laboratory for Luminescence Dating, Risø, Denmark. After sample preparation and separation of quartz grains, measurements were made using the single aliquot regenerated dose protocol (SAR) according to Murray et al. (1987) and Murray & Wintle (1999). It was assumed that the samples had been completely saturated with water for 95% of the time after burial, which seems reasonable considering the present-day rapid coastal erosion. Furthermore, it
is assumed, based on the grain size distribution, that after deposition the water content in the sediment was 14–24% (Larsen et al. 1999). Samples of the benthic foraminiferal species *Elphidium excavatum* from the four diamict elements were picked for amino acid analysis. The purpose was to improve the understanding of the absolute and relative ages, and in this way test the tectonic model. The samples were prepared according to the procedure described in Miller et al. (1983) and Sejrup & Haugen (1992), and subsequently run on an automatic amino acid analyser. The degree of isoleucine epimerization is given as the ratio between d-alloisoleucine and l-isoleucine (aIle/Ile), measured as peak heights using a HP 3300 computing integrator. Only the total fraction was analysed (Table 2).

Pollen samples (2.8 cm³) had one *Lycopodium* tablet added for calculation of pollen concentration (Stockmarr 1971) and were treated with HF and acetolysed according to Fægri & Iversen (1989). Pollen identifications were based on those of Fægri & Iversen (1989) in combination with a reference collection of modern material. Phase contrast/oil immersion objectives (63 ×/1.4, 100 ×/1.3) and 10 × oculars were used.

Description of architecture and sediments

Geometry of architectural elements

Four diamict beds or elements (DE1–4) and three interbeds (I1–3) of sorted sediments are identified between the Madakhá and Krinka rivers (Fig. 3). The distribution of diamict elements 1–3 is relatively uniform along the section, whereas the distribution of diamict element 4 is more limited. Where gullies intersect the coastal section, DE1–3 and I1–2 can be traced inland, indicating that they have a tabular geometry. Both the lateral and vertical variations of DE1–3 are mainly controlled by the architecture of I1 and I2, showing limited lateral persistence, and by the outline of I3. Usually, the upper boundary of DE1 is found above high tide level and rises to a
maximum of 25 m a.s.l. Although the lower contact has not been observed, Diamict Element 1 is at least 10 m thick, and is bounded by the slightly undulating base of I_1 or DE_2. Diamict Element 2 is usually 10–15 m thick and its upper and lower boundaries are often conformable and parallel. Exceptions to the relatively uniform distribution occur due to undulations of the base of I_2, or where I_3 truncates DE_2. Diamict Element 3 is more variable with a thickness between 0 and 40 m, controlled by the variation of its base. Diamict Element 4 has a discontinuous lateral distribution and is only identified in the easternmost parts of the section, where it is about 5 m thick. The DE_4 can be traced further inland as exposed patches of diamict on the terrain surface.

Interbed 1 exhibits a variable geometry, represented by deformed, sometimes folded lenses with a maximum thickness of 0.1–2 m and by a bed of relatively uniform thickness, about 10 m thick, which is subhorizontally truncated by DE_2. Interbed 2 is less variable than I_1, with a thickness up to 25 m. The geometry of I_3 is dominated by large-scale basin structures incised into the underlying sediment, sometimes as deep as 40 m. Between the main basins, Interbed 3 is a thin bed about 1 m thick and only covered where DE_4 is present (Fig. 3).

Basal contacts

Several major erosional surfaces can be traced along the section and are considered to be laterally continuous hiatuses. They form the basal contacts of individual diamict elements. The transition between the architectural elements DE_1 and DE_2 is characterized by shearing along both the lower and upper contacts of I_1 (Fig. 4). Where it reaches its maximum thickness, I_1 is undisturbed with the primary bedding intact. Deformation is restricted to narrow zones at its base and top (Fig. 5). Sometimes this is seen as a 1.5-m-thick transitional zone at the base of I_1, which consists of crudely banded diamict and sand with occasional folded sand lenses (Fig. 5B, C, D). Rotational features are recognized by clasts with wing-like appendages of diamict or sand indicating a sinistral sense of shear. Alternatively, I_1 is penetratively deformed, resulting in numerous lenses of sand, boudinage structures, sheath folds or fold vergence, all indicating progressive simple shear (van der Wateren et al. 2000). At these locations it is difficult to distinguish the bounding surfaces of the interbed because they are part of the transitional zone between DE_1 and DE_2. At other locations, I_1 is sharply overlain by a subhorizontal bed of slickensided mud up to 1 m thick that, at its minimum thickness, separates DE_2 from the underlying sediments (DE_1) by only a few millimetres (Fig. 5A).

Table 1. Optically stimulated luminescence (OSL) dates obtained from interbeds 1 and 2. Sample numbers starting with 02 denote samples collected in the year 2002. These dates are plotted on the sedimentary logs (Fig. 6). Sample numbers starting with 00 denote samples collected in the year 2000 from the same interbeds, but these are not plotted.

<table>
<thead>
<tr>
<th>Lab. no.</th>
<th>Sample no.</th>
<th>Site no.</th>
<th>Interbed</th>
<th>m a.s.l.</th>
<th>Age (kyr)</th>
<th>Dose, Gy</th>
<th>Dose rate, Gy/kyr w.c.%</th>
<th>lab no.</th>
<th>sample no.</th>
<th>site no.</th>
<th>interbed</th>
<th>m a.s.l.</th>
<th>age (kyr)</th>
<th>dose, gy</th>
<th>dose rate, gy/kyr w.c.%</th>
</tr>
</thead>
<tbody>
<tr>
<td>020015</td>
<td>02-218</td>
<td>02-218</td>
<td>DE_1</td>
<td>7.9</td>
<td>11.4</td>
<td>165.53</td>
<td>10.68</td>
<td>11 1.45</td>
<td>116.63</td>
<td>128.91</td>
<td>157.3</td>
<td>230 1.11</td>
<td>12.8</td>
<td>14.1</td>
<td>1.08 0.04</td>
</tr>
<tr>
<td>020018</td>
<td>02-220</td>
<td>02-220</td>
<td>DE_1</td>
<td>5.9</td>
<td>11.4</td>
<td>165.53</td>
<td>10.68</td>
<td>11 1.45</td>
<td>116.63</td>
<td>128.91</td>
<td>157.3</td>
<td>230 1.11</td>
<td>12.8</td>
<td>14.1</td>
<td>1.08 0.04</td>
</tr>
<tr>
<td>020024</td>
<td>02-224</td>
<td>02-224</td>
<td>DE_1</td>
<td>2.8</td>
<td>11.4</td>
<td>165.53</td>
<td>10.68</td>
<td>11 1.45</td>
<td>116.63</td>
<td>128.91</td>
<td>157.3</td>
<td>230 1.11</td>
<td>12.8</td>
<td>14.1</td>
<td>1.08 0.04</td>
</tr>
<tr>
<td>020025</td>
<td>02-225</td>
<td>02-225</td>
<td>DE_1</td>
<td>2.8</td>
<td>11.4</td>
<td>165.53</td>
<td>10.68</td>
<td>11 1.45</td>
<td>116.63</td>
<td>128.91</td>
<td>157.3</td>
<td>230 1.11</td>
<td>12.8</td>
<td>14.1</td>
<td>1.08 0.04</td>
</tr>
<tr>
<td>020026</td>
<td>02-226</td>
<td>02-226</td>
<td>DE_1</td>
<td>2.8</td>
<td>11.4</td>
<td>165.53</td>
<td>10.68</td>
<td>11 1.45</td>
<td>116.63</td>
<td>128.91</td>
<td>157.3</td>
<td>230 1.11</td>
<td>12.8</td>
<td>14.1</td>
<td>1.08 0.04</td>
</tr>
<tr>
<td>020030</td>
<td>02-230</td>
<td>02-230</td>
<td>DE_1</td>
<td>2.8</td>
<td>11.4</td>
<td>165.53</td>
<td>10.68</td>
<td>11 1.45</td>
<td>116.63</td>
<td>128.91</td>
<td>157.3</td>
<td>230 1.11</td>
<td>12.8</td>
<td>14.1</td>
<td>1.08 0.04</td>
</tr>
<tr>
<td>020032</td>
<td>02-232</td>
<td>02-232</td>
<td>DE_1</td>
<td>2.8</td>
<td>11.4</td>
<td>165.53</td>
<td>10.68</td>
<td>11 1.45</td>
<td>116.63</td>
<td>128.91</td>
<td>157.3</td>
<td>230 1.11</td>
<td>12.8</td>
<td>14.1</td>
<td>1.08 0.04</td>
</tr>
<tr>
<td>020037</td>
<td>02-237</td>
<td>02-237</td>
<td>DE_1</td>
<td>2.8</td>
<td>11.4</td>
<td>165.53</td>
<td>10.68</td>
<td>11 1.45</td>
<td>116.63</td>
<td>128.91</td>
<td>157.3</td>
<td>230 1.11</td>
<td>12.8</td>
<td>14.1</td>
<td>1.08 0.04</td>
</tr>
<tr>
<td>020040</td>
<td>02-240</td>
<td>02-240</td>
<td>DE_1</td>
<td>2.8</td>
<td>11.4</td>
<td>165.53</td>
<td>10.68</td>
<td>11 1.45</td>
<td>116.63</td>
<td>128.91</td>
<td>157.3</td>
<td>230 1.11</td>
<td>12.8</td>
<td>14.1</td>
<td>1.08 0.04</td>
</tr>
<tr>
<td>020022</td>
<td>02-222</td>
<td>02-222</td>
<td>DE_1</td>
<td>2.8</td>
<td>11.4</td>
<td>165.53</td>
<td>10.68</td>
<td>11 1.45</td>
<td>116.63</td>
<td>128.91</td>
<td>157.3</td>
<td>230 1.11</td>
<td>12.8</td>
<td>14.1</td>
<td>1.08 0.04</td>
</tr>
<tr>
<td>020023</td>
<td>02-223</td>
<td>02-223</td>
<td>DE_1</td>
<td>2.8</td>
<td>11.4</td>
<td>165.53</td>
<td>10.68</td>
<td>11 1.45</td>
<td>116.63</td>
<td>128.91</td>
<td>157.3</td>
<td>230 1.11</td>
<td>12.8</td>
<td>14.1</td>
<td>1.08 0.04</td>
</tr>
</tbody>
</table>
Table 2. Amino acid ratios obtained from samples of Elphidium excaatum extracted from diamict elements 1–4 underlying, separating and overlying interbeds (cf. Fig. 3). Note that only the total hydrolysed fraction was analysed.

<table>
<thead>
<tr>
<th>Lab. no.</th>
<th>Field no.</th>
<th>Site/m from zero</th>
<th>m a.s.l.</th>
<th>Diam. Elem.</th>
<th>alle/Ile (HYD)</th>
<th>Average</th>
<th>St. dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAL 3847 A</td>
<td>02–726</td>
<td>0209/550</td>
<td>35.0</td>
<td>DE4</td>
<td>0.025</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAL 3847 B</td>
<td>02–726</td>
<td>0209/550</td>
<td>35.0</td>
<td>DE4</td>
<td>0.034</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAL 3847 C</td>
<td>02–726</td>
<td>0209/550</td>
<td>35.0</td>
<td>DE4</td>
<td>0.034</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAL 3876</td>
<td>02–728</td>
<td>0209/550</td>
<td>34.0</td>
<td>DE4</td>
<td>0.037</td>
<td>0.037</td>
<td></td>
</tr>
<tr>
<td>BAL 3879</td>
<td>02–744</td>
<td>0209/15500</td>
<td>63.0</td>
<td>DE3</td>
<td>0.032</td>
<td>0.032</td>
<td></td>
</tr>
<tr>
<td>BAL 3846 A</td>
<td>02–736</td>
<td>0209/5400</td>
<td>29.0</td>
<td>DE2</td>
<td>0.025</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAL 3846 B</td>
<td>02–736</td>
<td>0209/5400</td>
<td>29.0</td>
<td>DE2</td>
<td>0.032</td>
<td>0.029</td>
<td>0.005</td>
</tr>
<tr>
<td>BAL 3875 A</td>
<td>02–747</td>
<td>0210/7</td>
<td>11.0</td>
<td>DE2</td>
<td>0.097</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAL 3875 B1</td>
<td>02–747</td>
<td>0210/7</td>
<td>11.0</td>
<td>DE2</td>
<td>0.085</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAL 3875 B2</td>
<td>02–747</td>
<td>0210/7</td>
<td>11.0</td>
<td>DE2</td>
<td>0.081</td>
<td>0.088</td>
<td>0.008</td>
</tr>
<tr>
<td>BAL 3878</td>
<td>02–732</td>
<td>0209/5300</td>
<td>2.5</td>
<td>DE1</td>
<td>0.090</td>
<td>0.090</td>
<td></td>
</tr>
<tr>
<td>BAL 3880</td>
<td>02–701</td>
<td>0209/1700</td>
<td>3.5</td>
<td>DE1</td>
<td>0.069</td>
<td>0.069</td>
<td></td>
</tr>
</tbody>
</table>

Similarly, the transition between DE2 and DE3 is characterized either by penetrative deformation of the entire I2 or the deformation is restricted to zones at the bottom and top, leaving the internal part of I2 intact with primary bedding preserved. Below the base of I2, in DE2, a zone with subvertical fracturing is overlain by a zone with subhorizontal fracturing. This is evident from their cross-cutting relationship. Fracture planes within the diamict are densely covered with slickensides. Where the transition is more strongly deformed it consists of a massive silty diamict and sand with silt laminae and lenses. It is characterized by extensional gravitational movement. Occasionally, the diamict component totally dominates its composition, while sand and mud only occur as thin lenses overprinted by normal faults. Otherwise the deformed sand and silt of I2 is steeply inclined and folded with the diamict, and is also cut by a series of normal faults about 10 cm long. The upper contact of I2 is a shear plane associated with shear lenses and tectonized mud with slickensided surfaces.

Interbed 3 truncates the underlying sediments, as indicated by an angular unconformity related to the development of large-scale basins (Fig. 3). The transition is often marked by a gradation of diamict into mud with clasts affected by gravitational movements. Where I3 is thin, primary bedded gravel and sand onlap the sharp contact to the underlying sediments. Diamict element 4 has a well-defined, sharp, basal contact with a deformed zone affecting the upper metre of I3 that shows overturned gravel, sand and mud (Fig. 5E).

Character of diamict elements

Diamict elements 1 to 4 are all massive, silty-clayey, firm, matrix-supported with moderate clast content and scattered fragments of shells. The colour is bluish, grey or brownish with no distinction between individual diamict elements. Clasts larger than a few centimetres are rare, except for occasional concentrations of densely striated larger clasts at basal and upper contacts. Most of the clasts are subangular and subrounded with frequent striations on their surfaces. Thin, deformed, 1-m-long sand lenses and bands of deformed dark grey mud occur, together with deformed stretched-out clasts about 10 cm long. Thin lenses and horizons of sand are observed in DE3 and DE4, but only rarely. Nevertheless, rafts of dark grey deformed mud about 100 m long and 5–20 m thick occur within DE3. Predominantly, the diamict has a compact appearance overprinted by both subvertical and subhorizontal fracture patterns. Sandstones and shales dominate the fine gravel content in all diamict elements. Calcareous rocks, mostly Palaeozoic limestone and black carbonates occur but are subordinate.

Character of interbeds

Lacustrine and fluvial sediments. – The lacustrine facies always overlies a diamict element, and fluvial sediments always overlie lacustrine sediments. Commonly, the lower part of the interbeds is composed of ripple and planar laminated silt and fine sand (Fig. 6). Climbing ripples indicate rapid sand accumulation (logs A and F in Fig. 6). In the middle part of the interbed, at site A, there is silt with interspersed dark brown sand layers. The colour is caused by a high content of organic matter, including visible macro plant fragments. This organic horizon has an erosive contact with the laminated beds below, as well as an erosive contact above with fine-grained sediments showing deformed ripples. At site B the lacustrine unit is cut erosively by several, 10 to 50-cm-thick, fining upwards sets of trough cross-bedded gravel to sand. Measurements of sediment transport direction consistently point

Mega-scale glaciotectonic complex, Kanin Peninsula, NW Russia

Table 2. Amino acid ratios obtained from samples of Elphidium excaatum extracted from diamict elements 1–4 underlying, separating and overlying interbeds (cf. Fig. 3). Note that only the total hydrolysed fraction was analysed.

<table>
<thead>
<tr>
<th>Lab. no.</th>
<th>Field no.</th>
<th>Site/m from zero</th>
<th>m a.s.l.</th>
<th>Diam. Elem.</th>
<th>alle/Ile (HYD)</th>
<th>Average</th>
<th>St. dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAL 3847 A</td>
<td>02–726</td>
<td>0209/550</td>
<td>35.0</td>
<td>DE4</td>
<td>0.025</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAL 3847 B</td>
<td>02–726</td>
<td>0209/550</td>
<td>35.0</td>
<td>DE4</td>
<td>0.034</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAL 3847 C</td>
<td>02–726</td>
<td>0209/550</td>
<td>35.0</td>
<td>DE4</td>
<td>0.034</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAL 3876</td>
<td>02–728</td>
<td>0209/550</td>
<td>34.0</td>
<td>DE4</td>
<td>0.037</td>
<td>0.037</td>
<td></td>
</tr>
<tr>
<td>BAL 3879</td>
<td>02–744</td>
<td>0209/15500</td>
<td>63.0</td>
<td>DE3</td>
<td>0.032</td>
<td>0.032</td>
<td></td>
</tr>
<tr>
<td>BAL 3846 A</td>
<td>02–736</td>
<td>0209/5400</td>
<td>29.0</td>
<td>DE2</td>
<td>0.025</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAL 3846 B</td>
<td>02–736</td>
<td>0209/5400</td>
<td>29.0</td>
<td>DE2</td>
<td>0.032</td>
<td>0.029</td>
<td>0.005</td>
</tr>
<tr>
<td>BAL 3875 A</td>
<td>02–747</td>
<td>0210/7</td>
<td>11.0</td>
<td>DE2</td>
<td>0.097</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAL 3875 B1</td>
<td>02–747</td>
<td>0210/7</td>
<td>11.0</td>
<td>DE2</td>
<td>0.085</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAL 3875 B2</td>
<td>02–747</td>
<td>0210/7</td>
<td>11.0</td>
<td>DE2</td>
<td>0.081</td>
<td>0.088</td>
<td>0.008</td>
</tr>
<tr>
<td>BAL 3878</td>
<td>02–732</td>
<td>0209/5300</td>
<td>2.5</td>
<td>DE1</td>
<td>0.090</td>
<td>0.090</td>
<td></td>
</tr>
<tr>
<td>BAL 3880</td>
<td>02–701</td>
<td>0209/1700</td>
<td>3.5</td>
<td>DE1</td>
<td>0.069</td>
<td>0.069</td>
<td></td>
</tr>
</tbody>
</table>
to a single source onshore relative to the present coastline.

The pollen diagram (Fig. 7) indicates considerable reworking: samples 02-519 (1–4) from the unit contain predominantly secondary and poorly preserved microfossils such as bisaccate pollen, trilete spores and pre-Quaternary pollen. Dinoflagellate cysts suggest a marine influenced origin. This unit is succeeded by a lacustrine depositional phase (samples 02-525 (1–2)) containing high concentrations of well-pre-

Fig. 3. Geological sections of the northern coast of Kanin between Madakhá (0 m) and Krinka (18 700 m) rivers showing outcrop of the different architectural elements: Diamict Element (DE) 1–4 and Interbeds (I) 1–3. Logs A–H refer to detailed sedimentological logging of interbeds 1 and 2. See Figs 6, 7.
served pollen. These assemblages show a progressive succession. Arboreal pollen (e.g. *Betula*, *Pinus*, *Picea*) increases, and the pioneer *Artemisia* decreases, suggesting a closure of the local vegetation. An open birch forest to birch-forest tundra with willows and tall herbs is indicated, whereas the *Picea* increase suggests northwards advancing spruce. Collectively, this signals a warming trend.

Sedimentary structures indicate that the lower ripple and planar laminated silt and fine sand were deposited as lake sediments. The trough cross-bedded gravels and sands that cut down erosively into lake sediments are interpreted as fluvial in origin, and possibly represent a single channel. The fluvial sediment is probably a remnant of progradation across the lake sediments as the lake filled up. The
observations indicate an environment with several shallow lakes that were filled rather rapidly with sediment.

Beach and shallow marine sediments.—These comprise both gravely and fine-grained facies, and are found overlying either diamict or lacustrine sediments (Fig. 6). About 4 m of gravelly facies overlies erosively fine-grained lacustrine sediments. It consists of 20 to 50-cm-thick bedsets of coarse gravel to medium sand. The bedsets are separated by low-angle bedding planes, which in some places are draped by 1 to 2-cm-thick layers of massive silt. The main bedding dips offshore relative to the present coastline, whereas tangential foresets and ripples are oppositely directed, more or less perpendicular to the present coastline, indicating bi-directional palaeocurrents. Shell fragments are abundant throughout. At site H (Fig. 6), the sand to gravel bedsets are found between fine sand to mud. The lower and upper fine-grained units are in contact with diamict elements below and above. The two fine-grained sequences are deformed, but primary laminations and ripples, some with double mud drapes, are identifiable. The same type of fine-grained sediment is found as a 5.8-m-thick, internally undisturbed, interbed at site C (Fig. 6). The unit is composed of heterolithic, very fine to medium-sized sand with mud drapes on ripple foresets. Double mud drapes and oppositely directed ripple foresets are common. Slightly larger asymmetrical wave ripples occur in the coarser sand about 1 m above the base of the interbed.

The low-angle sand to gravel bedset unit is interpreted as beach sediment, the main bedding of which dips offshore from the present coast. The
cross-bedding shows dunes migrating onshore. Below the beach sediments at site A (Fig. 6) there is 60 cm of alternating fine sand with weakly developed ripple structures and massive sandy silt. The bedding is subhorizontal with a bed thickness of 10-20 cm. This unit cuts down into organic lake sediments. The transition is interpreted as due to coastal erosion, turning a lacustrine basin into a marine embayment. The fine-grained, heterolithic sediment is interpreted as subtidal. Current ripples with double mud drapes on foresets are dominant, reflecting slack water phases during flood and ebb current reversals (Nio & Yang 1991). The slightly asymmetrical, larger ripples in the unit are interpreted as wave ripples, indicating deposition above the fair weather wave base. The thin beach unit (site H in Fig. 6), which is composed of thin bedsets situated in between subtidal sediments, indicates that the facies...
Fig. 6. Sedimentary logs from interbed 1 (A–C) and interbed 2 (D–H). Numbers below each letter represent distance in metres measured along the section from the outlet of the river Madakha. The positions of logs are also marked on the profile sketches (Fig. 3). Vertical scales in logs are metres above high tide. Photographs show lacustrine sediments with organic material and beach sediments (log A), and tidal sediments with typical double mud drapes on ripple foresets (log C).
Boresas 35 (2006)

Fig. 6 (Continued)
variations were caused by lateral migration of the shallow water environments rather than sea-level change.

Reconstruction of palaeoenvironments

Directional data and evidence of structural repetition

Ice flow directions are derived from intra-diamict clast fabric analyses, orientation of striation on clasts, slickensides and the direction of minor folds and thrust planes. Indication of external ice pressure is determinable from both small and large-scale structures cross-cutting diamict elements and interbeds, or at the basal contacts of architectural elements. In the directional data set, two populations of orientation can be identified; one from the northwest and another from the northeast. The fabric analyses show that both directions have equal abundance in all diamict elements where neither lateral nor vertical trends are recognized. However, a composite plot shows a dominance of the northwesterly direction (Fig. 8). Along the basal contacts, however, the directional sense of shear differs between individual architectural elements. Slickensides, together with major thrust planes at the base of I₁ and DE₂ and thrust planes within DE₁, indicate a deformation from northwest to southeast. In contrast, the same features at the base of I₂ and DE₃ reflect northeast to southwest deformation directions (Figs 3, 8).

Mostly based on fabric orientations, we suggest that Diamict Element 1 was deposited from the northwest and later overprinted by deformation involving shear along major thrust planes and sediment deformation from the northeast. Thus, it is possible that some of the clasts were re-oriented during thrusting from the northeast. When the consistently oriented sense of shear along these contacts is considered, the simplest interpretation of the multiple till- and interbed alternation would be that it is due to a glaciotectonically induced repetition of the same till unit and its underlying deposits. Considering the subhorizontal basal contacts and the associated, relatively uniform distribution of diamict elements, development of a thrust complex must have involved the formation of large nappes and transport of the substratum along thrust planes with a low inclination. This finds support in the striking similarities in facies composition between the individual diamict elements and interbeds in the investigated section. The morphological properties and petrographic composition of the clasts are consistent in all diamict elements.

The following model is proposed for the architecture of the Kanin coastal sediments (Fig. 9).

A. Pre-deformation deposition of mud, lacustrine, fluvial and shallow marine sediments.

B. An ice sheet centred in the Barents Sea invaded mainland Russia from the northwest and deposited a till in association with a deforming bed, i.e. deformation till. In the marginal zones of the ice sheet, compressive flow was the dominant type of deformation. As the ice advanced, the marginal compressive structures were successively overridden and attenuated. We suggest that the variation in ice/bed coupling is reflected in the degree of extensional deformation seen within I₁ and I₂, extending as it does from internally undisturbed interbeds to boudinage, sheath and fold verge structures (Boulton & Hindmarsh 1987; Hooke et al. 1997; Fischer et al. 2001).
When the ice sheet was advancing on to the Kanin area it moved up the adverse slope of the shelf towards the Kanin Ridge. This enhanced compression in the ice and was reflected in compression within the sediments (Bluemle & Clayton 1984). When the applied shear stress exceeded the strength of the foreland sediments, dislocation of a large floe of the overlying sediments was initiated. The advancing glacier pushed a subhorizontal nappe forward at a low angle on to the foreland. As tectonized mud is observed at the base of nappe structures, we speculate that weak mud acted as a medium for the décollement. Movement was probably facilitated by water-saturated mud at the décollement horizon, acting as a lubricator. It is reasonable to assume that permafrost played an important part in the formation of the thrust complex as stiff foreland sediments were necessary to transmit glacial stress and develop a width to depth ratio for the undeformed foreland wedge larger than 1:200 (Boulton et al. 1999; Bennett 2001). Irrespective of the presence of permafrost, the ice sheet and its substratum acted as one single tectonic unit deformed by compression in a similar way to strata with a different competence (Bennett 2001). Most movement occurred along a major thrust plane located at the base of the nappe, but which was diverged from the sole thrust at the décollement surface. However, considerable displacement also took place within the nappe, along the weakness zone represented by the lithological boundary between till and sorted sediments. The overthrust
sediments were subjected to compression resulting in small-scale reverse faulting, as seen in DE$_1$.

D. Another nappe was initiated and most of the deformation concentrated in narrow shear zones along major thrust planes resulting in structures showing a northwest sense of shear. The distal part of the nappes were exposed to the foreland of the glacier and may have been subject to normal faulting and slumping, and this would have overprinted the signature of the subhorizontal thrust planes (cf. van der Wateren 1985). The adverse slope of the foreland allowed proglacial meltwater to run parallel to the ice front, further encouraging slumping. It is likely that slumping occurred contemporaneous to thrusting, considering the sharp base of DE$_3$, cutting the slumped I$_2$. However, glacially induced stress must have reactivated part of this upper nappe, as northwest-trending structures along the thrust plane were overprinted by a northeast sense of shear, as seen in the lower parts of I$_2$ and the upper parts of DE$_1$.

E. After deglaciation, large drainage systems from the inland cut down into the thrust complex and basins

Fig. 9. Glaciotectonic model for the architecture of the Kanin thrust complex. A–F show the sequential development from Late Saalian to Middle Weichselian.
were filled with stratified, lacustrine sediments. Flows of saturated sediments along the basin slopes occurred both prior to and simultaneous with the infilling. This can be concluded from the transitional nature of the base of I₃. A final ice advance from the northwest or northeast moved on to the mainland and deposited DE₄ on top of the infilled basins, incising the thrust complex.

F. When the ice had left the southern Barents Sea, the northward drainage pattern of the Kanin Ridge was re-established. Minor rivers incised the Quaternary succession forming narrow gullies, while major rivers formed large fluvial terraces.

Depositional model and age of fine-grained sediments

Given that the glacial tectonic model (Fig. 9) is valid, interbeds 1 and 2 derive from the same stratigraphic succession. We suggest deposition in a setting similar to the present day along the north coast of the Kanin Peninsula for the sequences observed within the two interbeds (Fig. 10). This depositional model infers rapid coastal retreat and marine capturing of lakes forming small marine embayments.

Lacustrine sedimentation took place in shallow lakes close to the coastline (Fig. 10). The lakes rapidly filled in by lacustrine and fluvial sediments. Lakes that were not completely filled with sediment were turned into small marine embayments with shallow water marine sedimentation as the coastline retreated. Large sediment input by rivers in combination with tidal currents resulted in the deposition of tidally dominated sediments. Subtidal rippled sediments are common. Sandy foreshore sediments sandwiched between more fine-grained subtidal sediments are interpreted as due to lateral migration of the shallow marine facies. In fact, all observations concerning the interbeds can be interpreted in terms of lateral variations in the sedimentation patterns of a number of small lakes and marine embayments on either side of a retreating coastline. As the sediments are found in dislocated interbeds, basin and coastline configurations cannot be established accurately from palaeocurrent measurements. However, palaeocurrent measurements are directed offshore relative to the present coastline, or both on- and offshore in cases of oppositely directed currents. The present coastline (and profile) is oriented east–west, almost parallel to the strike of the thrust nappes. Thus, it can be concluded that the coastline,
during deposition of the successions found as interbeds, was located north of the present one, but ran more or less parallel to it.

OSL dates from interbeds 1 and 2 range in age from 92 to 188 kyr BP (Fig. 6, Table 1), but do not allow any firm conclusion to be drawn, although the data set would support the interpretation that the sediments are approximately Eemian in age. Amino acid ratios from shells and foraminifera are widely used to obtain chronological information (e.g. Sejrup et al. 1987; Larsen et al. 2000). The amino acid ratios on samples of *Elphidium excavatum* from the diamict elements fall into two distinct groups around 0.035 and 0.090 (Table 2). The fossils in diamict elements 1–3 may derive from marine sediments belonging to interbeds 1 and 2 and/or from an older marine unit. The marine fossils in Diamict Element 4 may be younger or could be re-sedimented from the same marine unit. The two amino acid clusters do not distinguish between interbeds 1–2 and interbed 3 (Table 2). Interestingly, all high values are at 11 m a.s.l. and lower, whereas the low values are found at 29 m a.s.l. and higher. This introduces the possibility that both groups derive from the same ice-free period, and that the high values relate to higher temperatures due to a transgression in the Middle Weichselian (Kjær et al. 2003; Jensen et al. 2006). However, it cannot be excluded that the two groups represent two different ice-free periods. There are no amino acid results from stratigraphically well-constrained sites on the Kanin Peninsula for comparison, only one analysis on *Arctica islandica* is reported (Miller & Mangerud 1985). The values from the Pyoza river area (Fig. 1) on *Elphidium excavatum* in Eemian sediments are higher than the low values in Table 2 (H. P. Sejrup, pers. comm. 2004).

The dislocated terrestrial and shallow marine sediments were deposited below the level where they are now found (0–60 m a.s.l.), i.e. below the present sea level. According to the glacial geological model, the sediments were dislocated by the first Weichselian ice advance in the area. Thus, the simplest interpretation is that the sediments were deposited some time in the Late Saalian (deglacial)–Eemian–Early Weichselian (pre-glacial) interval. A relative sea level much higher than the present-day level has been demonstrated for the Saalian–Eemian (Funder et al. 2002; Grøsfjeld et al. 2006; Larsen et al. 2006). During the Late Eemian–Early Weichselian the sea level fell below the present level. The coastal retreat inferred from the sedimentation pattern (Fig. 10) is at odds with a falling sea level, meaning that a standstill or transgression must have taken place during an overall regressive phase. The vegetational development (Fig. 7) cannot be used to discriminate further, because the information in the diagram presented is too sparse, and partly because little is known about vegetational development at these latitudes in the period Late Saalian to Early Weichselian (Nikonov & Vostrukhina 1964 (in Ikonen & Ekman 2001); Yevzerov et al. 1976 (in Ikonen & Ekman 2001)).

Conclusions

Glaciotectonic thrusting at a scale only known from marine seismic investigations was traced in an approximately 20-km-long section. This thrusting by the Barents Sea and Kara Sea ice sheets took place in Early to Middle Weichselian time. Owing to the resulting dislocation, stratigraphically older sorted sediments occur in two discrete interbeds between diamict elements. These sediments are of lacustrine, fluvial and shallow marine origin, probably of Early Weichselian age. The record from the interbeds indicates a sedimentation that started in lake basins, and continued in shallow marine embayments as the lakes opened to the sea. Sedimentation occurred at an elevation below the present sea level. The coastline at the time was located to the north of that of the present day, and ran subparallel to it. The transition from lacustrine to shallow marine sedimentation might represent a marine transgression, but the style of sedimentation recorded might also be explained in terms of a stable sea level and coastal erosion causing marine capturing of lake basins. The pollen record, although sparse and indicative of a slight warming trend, would represent interstadial rather than full interglacial conditions.

Acknowledgements. – This work is a contribution to the QUEEN project (Quaternary Environment of the Eurasian North) – a network project within the European Science Foundation. It was funded through the European Community project ‘Eurasian Ice Sheets’ (contract ENV4-CT970563), the Norwegian Research Council, the Danish Natural Science Research Council through the ‘CLIENT’ and ‘Triple Junction’ projects, the Swedish Polar Secretariat, the Norwegian Barents Secretariat and the Swedish Crafoord Foundation. Numerous discussions with colleagues from the QUEEN project contributed significantly to the work. Luminescence dating was carried out at the Nordic Laboratory for Luminescence Dating, Riso, Denmark. Amino acid analyses were done at the Amino Acid Laboratory of the University of Bergen. Anne Nordtømme, Geological Survey of Norway, prepared pollen samples. Erik Hárberg, Geological Survey of Norway, helped with figures 1 and 10. Comments by the journal referees, Drs. John F. Hiemstra and Jon Landvik, were of great help in improving the manuscript. Peter Padget corrected the English.

References

BOREAS 35 (2006) 17

Mega-scale glaciotectonic complex, Kanin Peninsula, NW Russia

Dear Author

Some questions have arisen during the preparation of your manuscript for typesetting. Please consider each of the following points below and make any corrections required in the proofs.

Please do not give answers to the questions on *this* sheet. All corrections should be made directly in the printed proofs.