Outline

Extension principle
Fuzzy relations
Fuzzy if-then rules
Compositional rule of inference
Fuzzy reasoning
Extension Principle

A is a fuzzy set on X:

$$A = \mu_A(x_1) / x_1 + \mu_A(x_2) / x_2 + \cdots + \mu_A(x_n) / x_n$$

The image of A under $f()$ is a fuzzy set B:

$$B = \mu_B(y_1) / y_1 + \mu_B(y_2) / y_2 + \cdots + \mu_B(y_n) / y_n$$

where $y_i = f(x_i), i = 1$ to n.

If $f()$ is a many-to-one mapping, then

$$\mu_B(y) = \max_{x = f^{-1}(y)} \mu_A(x)$$
Fuzzy Relations

A fuzzy relation R is a 2D MF:

$$R = \{((x, y), \mu_R(x, y)) | (x, y) \in X \times Y\}$$

Examples:

- x is close to y (x and y are numbers)
- x depends on y (x and y are events)
- x and y look alike (x, and y are persons or objects)
- If x is large, then y is small (x is an observed reading and y is a corresponding action)
Max-Min Composition

The max-min composition of two fuzzy relations R_1 (defined on X and Y) and R_2 (defined on Y and Z) is

$$\mu_{R_1 \circ R_2}(x, z) = \bigvee_y \left[\mu_{R_1}(x, y) \land \mu_{R_2}(y, z) \right]$$

Properties:

- **Associativity:**
 $$R \circ (S \circ T) = (R \circ S) \circ T$$

- **Distributivity over union:**
 $$R \circ (S \cup T) = (R \circ S) \cup (R \circ T)$$

- **Weak distributivity over intersection:**
 $$R \circ (S \cap T) \subseteq (R \circ S) \cap (R \circ T)$$

- **Monotonicity:**
 $$S \subseteq T \Rightarrow (R \circ S) \subseteq (R \circ T)$$
Max-Star Composition

Max-product composition:

\[\mu_{R_1 \circ R_2}(x, z) = \bigvee_y [\mu_{R_1}(x, y) \mu_{R_2}(y, z)] \]

In general, we have max-* composition:

\[\mu_{R_1 \circ R_2}(x, z) = \bigvee_y [\mu_{R_1}(x, y) \ast \mu_{R_2}(y, z)] \]

where * is a T-norm operator.
Linguistic Variables

A numerical variables takes numerical values:

\[Age = 65 \]

A linguistic variables takes linguistic values:

\[Age \text{ is old} \]

A linguistic values is a fuzzy set.

All linguistic values form a term set:

\[T(\text{age}) = \{\text{young, not young, very young, ...}\]

\[\text{middle aged, not middle aged, ...}\]

\[\text{old, not old, very old, more or less old, ...}\]

\[\text{not very yound and not very old, ...}\} \]
Linguistic Values (Terms)

(a) Primary Linguistic Values

(b) Composite Linguistic Values

\(X = \text{age} \)
Operations on Linguistic Values

Concentration: \(\text{CON}(A) = A^2\)

Dilation: \(\text{DIL}(A) = A^{0.5}\)

Contrast

\[\text{INT}(A) = \begin{cases} 2A^2, & 0 \leq \mu_A(x) \leq 0.5 \\ -2(-A)^2, & 0.5 \leq \mu_A(x) \leq 1 \end{cases}\]

Effects of Contrast Intensifier

intensif.m
Fuzzy If-Then Rules

General format:
If x is A then y is B

Examples:
- If pressure is high, then volume is small.
- If the road is slippery, then driving is dangerous.
- If a tomato is red, then it is ripe.
- If the speed is high, then apply the brake a little.
Fuzzy If-Then Rules

Two ways to interpret “If x is A then y is B”:

A coupled with B

A entails B
Fuzzy Rules and Fuzzy Reasoning

Fuzzy If-Then Rules

Two ways to interpret “If x is A then y is B”:

- **A coupled with B:** \((A \text{ and } B)\)

 \[R = A \to B = A \times B = \int \mu_A(x) \cdot \mu_B(y) |(x, y) \]

- **A entails B:** \((\text{not } A \text{ or } B)\)

 - Material implication
 - Propositional calculus
 - Extended propositional calculus
 - Generalization of modus ponens
Fuzzy If-Then Rules

Fuzzy implication function:

\[\mu_R(x, y) = f(\mu_A(x), \mu_B(y)) = f(a, b) \]

A coupled with B
Fuzzy Rules and Fuzzy Reasoning

Fuzzy If-Then Rules

A entails B

(a) Zadeh's Arithmetic Rule (b) Zadeh's Max-Min Rule
(c) Boolean Fuzzy Implication (d) Goguen's Fuzzy Implication

fuzimp.m
Compositional Rule of Inference

Derivation of $y = b$ from $x = a$ and $y = f(x)$:

- a and b: points
- $y = f(x)$: a curve

- a and b: intervals
- $y = f(x)$: an interval-valued function
Compositional Rule of Inference

\(a \) is a fuzzy set and \(y = f(x) \) is a fuzzy relation:
Fuzzy Reasoning

Single rule with single antecedent

Rule: if x is A then y is B
Fact: x is A'
Conclusion: y is B'

Graphic Representation:
Fuzzy Reasoning

Single rule with multiple antecedent
Rule: if x is A and y is B then z is C
Fact: x is A' and y is B'
Conclusion: z is C'

Graphic Representation:
Fuzzy Reasoning

\[C' = (A' \times B') \circ (A \times B \rightarrow C) \]

Premise 1

\[\mu_{C'}(z) = \bigvee_{x,y} \left[\mu_{A'}(x) \land \mu_{B'}(y) \right] \land \left[\mu_A(x) \land \mu_B(y) \land \mu_C(z) \right] \]

Premise 2

\[= \bigvee_{x,y} \left\{ \mu_{A'}(x) \land \mu_{B'}(y) \land \mu_A(x) \land \mu_B(y) \right\} \land \mu_C(z) \]

\[= \left\{ \bigvee_x \left[\mu_{A'}(x) \land \mu_A(x) \right] \right\} \land \left\{ \bigvee_y \left[\mu_{B'}(y) \land \mu_B(y) \right] \right\} \land \mu_C(z) \]

\[= (w_1 \land w_2) \land \mu_C(z) \]
Multiple rules with multiple antecedent

Rule 1: if x is A_1 and y is B_1 then z is C_1
Rule 2: if x is A_2 and y is B_2 then z is C_2
Fact: x is A' and y is B'
Conclusion: z is C'

Graphic Representation: (next slide)
Fuzzy Reasoning

Graphics representation:

- A', A_1 and B', B_1 in the X and Y axes, respectively.
- C_1 and C_2 in the Z axis.
- x is A', y is B', and z is C'.

T-norm and weighted values w_1 and w_2.

Fuzzy Rules and Fuzzy Reasoning
Fuzzy Reasoning: MATLAB Demo

>> ruleview mam21
Other Variants

Some terminology:

- Degrees of compatibility (match)
- Firing strength
- Qualified (induced) MFs
- Overall output MF