
TRex – The Refactoring and Metrics Tool for TTCN-3 Test Specifications

Paul Baker, Dominic Evans

Motorola Labs, Jays Close, Viables Industrial Estate,

Basingstoke, Hampshire, RG22 4PD, UK

{paul.baker,vnsd001}@motorola.com

Jens Grabowski, Helmut Neukirchen, Benjamin Zeiss

Software Engineering for Distributed Systems Group,

Institute for Informatics, University of Göttingen,

Lotzestr. 16-18, D-37083 Göttingen, Germany.

{grabowski,neukirchen,zeiss}@cs.uni-goettingen.de

Abstract

Comprehensive testing of modern communication sys-

tems often requires large and complex test suites which then

have to be maintained throughout the system life-cycle. In-

dustrial experience, with those written in the standardised

Testing and Test Control Notation (TTCN-3), has shown

that this maintenance is a non-trivial task and its burden

could be reduced if appropriate tool support existed. To

this aim, Motorola has collaborated with the University of

Göttingen to develop TRex, a TTCN-3 development environ-

ment published under the Eclipse Public License, which no-

tably provides suitable metrics and refactorings to enable

the assessment and automatic restructuring of test suites.

In this paper we present the TRex tool, which will make it

far easier to construct and maintain TTCN-3 tests that are

concise and optimally balanced with respect to readability,

usability, and maintainability.

1. Introduction

The Testing and Test Control Notation (TTCN-3) [3, 5] is

a test specification and test implementation language stan-

dardised by the European Telecommunications Standards

Institute (ETSI) and the International Telecommunication

Union (ITU). While TTCN-3 has its roots in functional

black-box testing of telecommunication systems, it is nowa-

days also used in other domains such as Internet proto-

cols, automotive, aerospace, or service-oriented architec-

tures. TTCN-3 can be used not only for specifying and

implementing functional tests, but also for scalability, ro-

bustness or stress tests. TTCN-3 is based on a textual core

notation and several presentation formats.

Commercial TTCN-3 tools [7, 8, 11] support editing test

suites and compiling them into executable code. By imple-

menting the interfaces of the standardised TTCN-3 runtime

environment, these tools may also allow TTCN-3 test cam-

paigns to be managed and executed.

However, experience within Motorola has shown that not

only editing and execution of TTCN-3 test suites, but also

maintenance and assessment of these are important issues

which require tool support [1]. It is not always obvious

how to use TTCN-3 concepts such as templates in a manner

that can maximise readability, usability and maintainabil-

ity, so user guidance and assistance in these areas would

be extremely beneficial. In addition, Motorola teams have

encountered related problems whilst migrating legacy test

suites to TTCN-3; the conversion of tests for a UMTS based

component to TTCN-3 initially resulted in 60,000 lines of

code which were hard to read, hard to (re-)use, and hard

to maintain, as the benefits of moving to TTCN-3 were not

yet being fully exploited. In legacy modelling languages

the specification of data values is often tightly coupled with

the behaviour specification, i.e. when a signal is sent be-

tween processes, the value of the signal is defined within

the behaviour of each process. This means that when the

signal type is modified, each behaviour definition must also

be modified and value definitions cannot easily be reused.

In this case the task of manually decoupling data from be-

haviour to improve maintainability, whilst also reducing

suite size by merging commonalities and hence improving

readability, proved to be particularly challenging and time-

consuming.

Currently, no tools for assessing and improving the qual-

ity of TTCN-3 test suites exist. To this end, Motorola has

collaborated with the University of Göttingen to develop a

TTCN-3 refactoring and metrics tool, called TRex. The ini-



tial aims of TRex were to: (1) enable the assessment of a

TTCN-3 test suite with respect to lessons learnt from ex-

perience, (2) provide a means of detecting opportunities to

avoid any issues, and (3) a means for restructuring TTCN-3

test suites to improve them with respect to any existing is-

sues. To let others participate in our tool and to partici-

pate in contributions from others, we have made TRex a

general open-source quality assurance and quality improve-

ment tool for TTCN-3 test suites.

This paper is structured as follows: In the next section,

we will give an overview of TRex’s functionality following

with a description of the implementation in Section 3. In

Section 4 we conclude with a summary and outlook.

2. Functionality of the TRex tool

TRex is implemented as an Eclipse plug-in and there-

fore, anyone who has had experience with the Eclipse Plat-

form [2], e.g. by using the popular Java Development Tools

(JDT), will immediately feel comfortable with TRex. The

TTCN-3 perspective of TRex allows editing of TTCN-3

core notation as well as assessing and improving the quality

of TTCN-3 test suites.

2.1. Editing

TRex provides editing facilities known from a typical In-

tegrated Development Environment (IDE). These include a

Navigator view for project browsing, an editor with syntax

highlighting and checking according to the latest TTCN-3

core language specification (v3.1.1), an Outline view pro-

viding a tree representation of the TTCN-3 structure for

the currently edited file, Content Assist which automatically

completes identifiers from their prefix and scope, a code for-

matter, a reference finder which displays all references to a

given element, and the possibility to jump to the declaration

of a given reference. In addition, to allow the edited tests to

be compiled and run against either a real or emulated sys-

tem under test, the Telelogic Tau G2/Tester [8] analyser and

compiler t3cg is integrated into the TRex environment.

2.2. Refactoring

As a powerful means for improving the quality of

TTCN-3 test suites, TRex is able to restructure test suites

in an automated way. This is achieved by using refactoring

which is defined as “a change made to the internal struc-

ture of software to make it easier to understand and cheaper

to modify without changing its observable behavior” [4].

While refactoring is well known for implementation lan-

guages like Java, it has not been systematically studied for

TTCN-3. Thus, we developed a catalogue of 49 refactorings

applicable for TTCN-3 [13, 14]. In TRex, we have begun

(a) Configuration

(b) Preview

Figure 1. Wizards for the Inline Template refac-

toring

implementing those refactorings which we believe would

improve the maintainability of Motorola’s test suites and

have so far completed the Inline Template, Inline Template

Parameter, Merge Templates, and Rename refactorings. As

an example, we will describe the Inline Template refactor-

ing in detail.

For specifying test data, TTCN-3 uses so called tem-

plates. A template may either be defined as a named entity

on its own or “on-the-fly” using an inline template nota-

tion. The first way promotes re-use since a template defi-

nition may be referenced at several locations. In contrast,

test behaviour may be easier to understand if it uses inline

templates, since inline templates define test data at the same

location where it is actually used for sending or receiving.

The Inline Template refactoring allows a template refer-

ence to be transformed into its semantically equivalent in-

line template notation. The application of this refactoring

is particularly reasonable if a template is only referenced

once. When applying this refactoring to a template refer-

ence, TRex opens a wizard dialogue which offers config-

uration for the Inline Template refactoring. As shown in

Figure 1(a), it is possible to remove the declaration of a tem-

plate if it was referenced only once and the Formatter may

additionally be used to obtain a pretty-printed template. Be-

fore a refactoring is actually applied, the refactoring wizard

displays a preview of all resulting changes (Figure 1(b)).



(a) TTCN-3 Metrics view (b) TRex’s Quick Fix suggestion

(c) TRex’s rule-based refactoring suggestions

Figure 2. TRex’s Metrics-based functionality

These refactorings are typically semi-automated, since

the user still has to identify locations where they should

be applied (as known from JDT for example). However,

as shown in the next section, TRex can also automatically

identify such locations.

2.3. Metrics

As part of TRex we are investigating the application of

metrics to give an indication of both the overall quality of

a TTCN-3 test suite and any locations where it might be

beneficial to apply a particular refactoring.

We have implemented basic size metrics in the TRex

tool, including Number of . . . and References to . . . for vari-

ous definitions and types as well as a measure, labelled Tem-

plate coupling, of the dependency between test behaviour

and test data (in the form of template definitions). Fig-

ure 2(a) shows the TTCN-3 Metrics view.

Based on these metrics, we have defined several rules by

which the templates of a TTCN-3 test suite can be analysed,

e.g. looking at number of references, use of parameters,

commonalities, etc. From these, TRex is able to identify

problematic code fragments and to suggest suitable refac-

torings. For example, templates which could be removed,

inlined, or merged into a common parametrised version.

These suggestions are displayed in the Problems view as

warnings (Figure 2(c)) and can either be treated merely as

indicators that should be taken into account whilst working

on the test suite, or an associated Quick Fix can be invoked

via the context menu to perform a suggested refactoring au-

tomatically (Figure 2(b)). A full description of our met-

rics and rules is available in our previous paper on TTCN-3

refactoring [14].

3. Implementation of the TRex tool

Building an IDE on Eclipse is attractive from the devel-

oper’s point of view as it is well documented and supported,

and provides many ready-to-use components. Such compo-

nents include project and file management (workspace) and

a graphical user interface (workbench) which can be con-

figured to match the typical layout of an IDE. In fact, the

majority of TRex’s functionality is built upon abstract im-

plementations provided by Eclipse.

Figure 3 shows the TRex tool chain: the Eclipse Plat-

form provides the basic IDE infrastructure. The TRex com-

ponents build on top of the Eclipse Platform. They are ex-

plained in the subsequent sections.

3.1. Static analysis

The foundation for most functionality in TRex is the

TTCN-3 parser and the resulting syntax tree1. For build-

ing up the syntax tree for a test suite we use ‘ANother Tool

1An alternative approach would be to build up a TTCN-3 meta

model [10] representation of a TTCN-3 test suite and to use this repre-

sentation instead of the syntax tree.



(3) Quality Assessment (2) Automated Refactorings

(1) Static Analysis

Eclipse Platform
User

Interface

Resource

Management

Text

Editor

Language

Toolkit
...

TTCN-3
Core

Notation

ANTLR
Lexing,
Parsing

Refactoring 
Processor

Refactored
TTCN-3

Core
Notation

Transformed 
Subtree of the
Syntax Tree

Pretty Printer

Change 
Weaver

Syntax Tree /
Symbol Table

Metrics

Rule-Based Refactoring Suggestions

Figure 3. The TRex tool chain

for Language Recognition’ (ANTLR) [9], a parser genera-

tor which supports lexing, parsing, and syntax tree creation

and traversal. For tree traversal, ANTLR uses tree gram-

mars (e.g. the pretty printer uses a tree grammar enriched

with semantic actions for the syntax reconstruction).

Most of the advanced functionality of TRex requires ad-

ditional information for TTCN-3 identifiers, such as the

identifier’s type, or the syntax tree node of its declaration.

To easily find this information, a symbol table was imple-

mented. The syntax tree and the symbol table provide the

basis upon which most of TRex’s present functionality is

realised, e.g. the metrics and refactoring implementations

both use them. As shown in Block (1) of Figure 3, the

lexer creates a token stream from the TTCN-3 core nota-

tion which is used by the parser for syntactical validation

and for building the syntax tree. In addition, the symbol

table is also created here.

3.2. The refactoring implementation

The refactoring implementations make use of the Eclipse

Language Toolkit (LTK) which provides abstract classes for

semantic preserving workspace transformations and cus-

tomisable wizard pages for the user interaction. The benefit

of such wizard pages is, for example, an integrated preview

pane that can be used to compare the original source to the

refactored source side by side.

Block (2) in Figure 3 depicts how the automated refac-

torings are realised. On the basis of the static analysis step

(Block (1)), the workspace transformations can be calcu-

lated once the concerned syntax tree node (or nodes respec-

tively) has been found through a data structure which stores

identifiers along with their text file offsets and once the user

entered any required information in the refactoring wizard.

The transformation of the workspace resources (i.e. text

files) is realised with a programmatic text editor provided by

the Eclipse Platform. It supports copy, paste, move, delete,

insert, and replace operations. These operations are used

to weave only the textually changed parts into the original

TTCN-3 source files. Therefore most of the original for-

matting is preserved. In some cases an intermediate step

involving a syntax tree transformation may become nec-

essary, in order to calculate the required changes. In this

case, the TTCN-3 core notation to be weaved into the orig-

inal TTCN-3 source files is obtained by the pretty printer.

Applying multiple changes to a single file is supported by

the programmatic editor by automatically tracking changing

offset positions.

3.3. Metrics and refactoring suggestions

Metrics are measured immediately after the syntax tree

for a test suite has been built or updated (Block (3) in

Figure 3). The tree is then fully traversed; all definitions

that metrics will be calculated for (altstep, function, tem-

plate, etc.) are recorded and all communication statements

(send, receive, etc.) are processed to derive Template cou-

pling scorings. References to all of these are calculated in

a further pass of the tree, hence giving enough information

for the basic size metrics (described in Section 2.3) to be

displayed. Then all templates found in the first step are pro-

cessed one-by-one against the analysis rules, using the pre-

viously calculated referencing information as well as further

inspection of their structure.

Once this has completed, the rule findings are associated

with the templates in the form of customised Eclipse marker

objects which are automatically displayed in the Problems

view. Quick Fixes are resolved for each of them based on

extended attributes which indicate the detected situation and

hence some corresponding suggestion(s) from the rule set.

4. Summary and outlook

We presented TRex, an Eclipse-based TTCN-3 devel-

opment environment with an emphasis on quality assess-

ment and quality improvement of TTCN-3 test suites. TRex

has been developed as a collaboration between Motorola



and the University of Göttingen to address industrial de-

mands by applying current research results. Besides editing

functionality, TRex provides user-initiated semi-automated

refactoring of TTCN-3 test suites, as well as fully auto-

mated refactoring based on special rules which interpret

metric values.

Future versions of TRex will include enhanced editing

capabilities and further metrics, refactoring, and analyses

for TTCN-3 test suites. Therefore, we have started to imple-

ment control-flow- and call-graphs for TTCN-3 behaviour.

These graphs will be used, for example, to provide com-

plexity metrics and to allow the detection of anomalies in

the control- and data-flow.

Even though TRex is still under development, we have

already started our first experiments into the use of TRex for

quality improvement and assessment. The results are very

promising. For example, test suites consisting of many tem-

plates were reduced in size considerably by automatically

removing unused templates and by merging similar tem-

plates into common parametrised versions. We have also

started to analyse existing real-world TTCN-3 test suites

in order to determine appropriate boundary values for our

metrics. These boundary values are very important for the

optimal interpretation of calculated metrics.

The use of metrics to assess the quality of TTCN-3 test

suites and to suggest appropriate refactorings is only one

possible approach. A further approach, which we would

like to pursue in the future, is to identify anti-patterns, i.e.

inappropriate usage of TTCN-3 (so called “bad smells”). In

contrast to the calculation of metrics, this requires a pattern-

based approach, e.g. to identify duplicate code.

TRex is an open-source tool that is freely available under

the Eclipse Public License at its website [12]. In addition to

the application of TRex in industry, TRex is also being used

as a tool for academic research and teaching. We invite the

TTCN-3 community to use the tool, share their experience,

and participate in the future development of TRex.

Currently, we have defined the notion of quality of

TTCN-3 test suites only in an informal manner: e.g. us-

ing inline templates reduces maintainability but improves

readability (but only up to a certain size of a template) or

parametrised templates promote reuse, but not necessarily

maintainability or readability. However, as a solid foun-

dation for test suite assessment and improvement a more

formal quality model for test suites is desirable. For qual-

ity of software products in general, the International Or-

ganization for Standardization and the International Elec-

trotechnical Commission have defined quality characteris-

tics (functionality, reliability, usability, efficiency, maintain-

ability, and portability), sub-characteristics, and metrics for

measuring attributes of these characteristics [6]. Thus, for

future work the challenge remains to investigate the appli-

cability of this existing quality model to test specifications.

References

[1] P. Baker, S. Loh, and F. Weil. Model-Driven Engineering

in a Large Industrial Context – Motorola Case Study. In

L. Briand and C. Williams, editors, Model Driven Engineer-

ing Languages and Systems: 8th International Conference,

MoDELS 2005, Montego Bay, Jamaica, October 2-7, 2005,

volume 3713 of Lecture Notes in Computer Science (LNCS),

pages 476–491. Springer, May 2005.

[2] Eclipse Foundation. Eclipse. http://www.eclipse.

org, 2006.

[3] ETSI European Standard (ES) 201 873 V3.1.1 (2005-06):

The Testing and Test Control Notation version 3; Parts 1–7.

European Telecommunications Standards Institute (ETSI),

Sophia-Antipolis, France, also published as ITU-T Recom-

mendation Z.140–Z.146, 2005.

[4] M. Fowler. Refactoring – Improving the Design of Existing

Code. Addison-Wesley, 1999.

[5] J. Grabowski, D. Hogrefe, G. Réthy, I. Schieferdecker,

A. Wiles, and C. Willcock. An Introduction into the Testing

and Test Control Notation (TTCN-3). Computer Networks,

42(3), June 2003.

[6] ISO/IEC Standard No. 9126: Software engineering – Prod-

uct quality; Parts 1–4. International Organization for Stan-

dardization (ISO) / International Electrotechnical Commis-

sion (IEC), Geneva, Switzerland, 2001-2004.

[7] OpenTTCN Oy. OpenTTCN Tester for TTCN-3.

http://www.openttcn.com/Sections/

Products/OpenTTCN3, 2006.

[8] Telelogic AB. Tau/Tester. http://www.telelogic.

com/corp/products/tau/tester/index.cfm,

2006.

[9] T. Parr. ANTLR parser generator. http://www.antlr.

org, 2006.

[10] I. Schieferdecker and G. Din. A Meta-model for TTCN-3.

In M. Núñez, Z. Maamar, F. Pelayo, K. Pousttchi, and

F. Rubio, editors, Applying Formal Methods: Testing, Per-

formance and M/ECommerce, FORTE 2004 Workshops,

Toledo, Spain, October 1-2, 2004, volume 3236 of Lec-

ture Notes in Computer Science (LNCS), pages 366–379.

Springer, 2004.

[11] TestingTechnologies. TTworkbench. http://www.

testingtech.de/products/ttwb intro.php,

2006.

[12] TRex Website. http://www.trex.informatik.

uni-goettingen.de, 2006.

[13] B. Zeiss. A Refactoring Tool for TTCN-3. Master’s thesis,

Institute for Informatics, University of Göttingen, Germany,

ZFI-BM-2006-05, Mar. 2006.

[14] B. Zeiss, H. Neukirchen, J. Grabowski, D. Evans, and

P. Baker. Refactoring for TTCN-3 Test Suites. In Pro-

ceedings of SAM’06: Fifth Workshop on System Analysis

and Modelling, May 31–June 2, 2006, University of Kaisers-

lautern, Germany, 2006.


