Cloud Computing Evaluation from a Nordic eScience User Perspective

Helmut Neukirchen
helmut@hi.is

Iðnaðarverkfræði-, vélaverkfræði- og tölvunarfræðideild
Verkfræði- og náttúruvísindasvið
Háskóli Íslands
About Me

- Helmut Neukirchen
- Associate professor
 Computer Science
 University of Iceland
- Research fields:
 - Software Engineering
 - Distributed Systems
About Cloud Computing

• Historic example: Amazon invested into hardware to handle Christmas shopping peak.
 – Now, Amazon sells idle CPU time (“pay as you go”).

⇒ Cloud computing: Provide computational resources on demand and access them via a network.
 – Users do not need to invest into hardware.
 – Users can scale on demand.
 – Don’t care about underlying hardware (virtualisation).
 – Cheaper (economy of scale, averaging, multiplexing, energy, ...).
Classification of Clouds

• **Public cloud**: Offer paid resources via the Internet.
• **Private cloud**: Use virtualisation in own datacenter.
 – E.g. to ease changing underlying hardware:
 • If machine needs to be replaced or rebooted: just move seamlessly Virtual Machine image from one machine to another.
 – E.g. allows to give users superuser privilege.
 • Can install their own software within virtual machine sandbox.

• **Hybrid cloud**: Scale from private into public cloud.
 – Seamlessly if private cloud uses same cloud management API interface as public cloud.
About the NEON (Northern Europe Cloud Computing) project

- Funded by NDGF – the Nordic DataGrid Facility.
- Partners from Sweden, Norway, Denmark, Finland, Iceland.
- **Goal: Reviewing the cloud promises**
 - What can cloud computing give to the Nordic eScience community?
 - Only using cloud for non High-Performance Computing considered!
- **through hands-on experiments.**
 - Obtain real user experience, get real cost data.
- **Evaluation included:**
 - Private cloud software stacks: Eucalyptus, OpenNebula.
 - Public cloud: Amazon Elastic Compute Cloud (EC2).
Gap Analysis: Private Cloud

- A pain (or even failed) to set up.
 - Even worse: rapidly evolving \(\Rightarrow \) many updates.
- Not feature complete.
 - Typically, pure computing virtualisation only.
 - Tendency towards Amazon API.
 - Cloud storage services just starting.
- No integration with existing authentication \& authorization infrastructure (AAI).
Gap Analysis: Public cloud

- Easy to use, instantly available.
- Feature rich.
 - Computing, storage, data base, load balancing…
 - But: no automated means to control costs (i.e. quota management).
 - Not in the interest of public cloud provider!
 - Third party software (RightScale) helps.
- Privacy concerns or even legal restrictions.
- No integration with existing AAI.
Cost Analysis: Private cloud

• Still moving target:
 Administrative costs not yet predictable!

• In contrast to public cloud:
 No extra costs for network transfer in/out of cloud.
Cost Analysis: Public cloud

- Prices (CPU hour) highly competitive.
- No upfront hardware investment needed.
- Need to pay for network transfer in/out.
 - Data lock-in: expensive to transfer data.
 ⇒ Data/Storage intensive applications not suitable.
- “Economic Denial of Service”.
 - If cloud identity is subject of theft, high costs might get created.
Conclusions

- **Public cloud offerings:**
 - Mature.
 - Recent Amazon EC2 outage puts question mark on availability.
 - Competitive prices.

- **Private cloud software stacks:**
 - Not mature, yet. Expected to be in 2012. ⇒ Wait with private clouds!

- **Approx. 20% of the jobs running in Nordic HPC centers suitable to be off-loaded to public cloud.**
 - Jobs with small memory requirements, not I/O or data intensive.
 ⇒ Would make these 20% available for “real” HPC jobs.

- **Users will anyway use public cloud, so stay ahead.**
 ⇒ National contact points for users (support, better pricing).
• Thank you for your attention!
• Any questions?

• Further readings from the NEON project:
 → http://uni.hi.is/helmut
 → Publications
 → Articles in Conference Proceedings (2011)
 → Technical reports (2010)

• Want to experiment on your own?
 – Amazon grants very easy to get!