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Self-consistent calculations using the Perdew-Zunger self-interaction correction (PZ-SIC) to local
density and gradient dependent energy functionals are presented for the binding energy and equilib-
rium geometry of small molecules as well as energy barriers of reactions. The effect of the correction
is to reduce binding energy and bond lengths and increase activation energy barriers when bond
breaking is involved. The accuracy of the corrected functionals varies strongly, the correction to the
binding energy being too weak for the local density approximation but too strong for the gradient
dependent functionals considered. For the Perdew, Burke, and Ernzerhof (PBE) functional, a scal-
ing of the PZ-SIC by one half gives improved results on average for both binding energy and bond
lengths. The PZ-SIC does not necessarily give more accurate total energy, but it can result in a bet-
ter cancellation of errors. An essential aspect of these calculations is the use of complex orbitals. A
restriction to real orbitals leads to less accurate results as was recently shown for atoms [S. Klüpfel,
P. Klüpfel, and H. Jónsson, Phys. Rev. A 84, 050501 (2011)]. The molecular geometry of radicals
can be strongly affected by PZ-SIC. An incorrect, non-linear structure of the C2H radical predicted
by PBE is corrected by PZ-SIC. The CH3 radical is correctly predicted to be planar when complex
orbitals are used, while it is non-planar when the PZ-SIC calculation is restricted to real orbitals.
© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4752229]

I. INTRODUCTION

Density functional theory (DFT)1, 2 has become a power-
ful tool for physicists and chemists to describe the electronic
structure of atoms, molecules, and solids. While being ex-
act in theory, practical applications of DFT rely on approx-
imations of the exchange-correlation (xc) functional. The lo-
cal spin density approximation (LSD)2 is in most cases too
crude an approximation for the study of molecular systems.
Functionals based on the generalized gradient approximation
(GGA)3–8 allow for a more accurate description of the in-
homogeneous electron densities of molecules but also turn
out not to be accurate enough in many cases. The accuracy
of GGA functionals for applications of chemical interest can
be further improved by admixture of a fraction of exact ex-
change in the form of hybrid functionals.9 The B3LYP10–14

hybrid functional has become widely used in molecular stud-
ies. More recently a number of new functionals have been de-
veloped to reproduce certain chemical or molecular properties
to high accuracy, while being less accurate for others.15

In the spin-unrestricted Kohn-Sham (KS) formalism,2, 16

the energy of a system of N electrons in an external potential
vext(r) is defined through the spin-densities ρ↑ + ρ↓ = ρ by

EKS[ρ↑, ρ↓] = Ts[ρ↑, ρ↓] + Vext[ρ] + EH[ρ] + Exc[ρ↑, ρ↓],
(1)

where Vext is the electrostatic interaction energy of the den-
sity with the external field and EH is the Hartree energy, the
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classical Coulomb repulsion of the charge density with itself.
Ts is the kinetic energy of the non-interacting reference sys-
tem, constructed from the set of KS-orbitals {ϕi} to produce
the same density as the exact wave function. The exchange-
correlation energy, Exc, contains all remaining contributions
to the exact energy.

The xc-energy can be split into the sum of exchange, Ex,
and correlation energy, Ec. For any one-electron density, ρ1,
the two conditions

Ex[ρ1, 0] = −EH[ρ1] (2)

and

Ec[ρ1, 0] = 0 (3)

are fulfilled by the exact functional. The second condition
can be satisfied by a semi-local form of the correlation func-
tional as the one proposed by Lee, Yang, and Parr (LYP).13

It is, however, not possible to formulate an exchange func-
tional that can, for any possible ρ1, compensate the non-local
Hartree energy merely from local information of the density.
For approximate semi-local functionals condition (2), or both
conditions, (2) and (3), are violated. This gives rise to a self-
interaction error (SIE),

ESIE[ρ1] = EH[ρ1] + Exc[ρ1, 0] . (4)

Perdew and Zunger proposed a self-interaction correction
scheme (SIC) in which the SIE of the individual orbitals,
as defined by Eq. (4), is subtracted from the total energy.17

The Perdew-Zunger self-interaction correction (PZ-SIC)
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energy functional,

EPZ-SIC[ρN ] = EKS[ρ↑, ρ↓] −
N∑

i=1

ESIE[ρi] , (5)

depends not only on the total spin-densities, but also on the
orbital densities, ρN = (ρ1, . . . , ρN) with ρ i = |ϕi|2, and can
in principle be applied to any approximate xc-functional.

For the exact functional, the correction term van-
ishes for any many-electron system, as can be seen from
Eqs. (2) and (3). For approximate functionals, the PZ-SIC is
accurate for any one-electron density but for many-electron
systems it is in general only an approximate correction, as the
magnitude of the many-electron self-interaction error does not
have to be the sum of the individual SIE terms of Eq. (4).18

While this orbital based estimate cannot be expected to elimi-
nate all self-interaction for many-electron systems, it may im-
prove the accuracy of approximate functionals. The purpose
of the present study is to test the accuracy of PZ-SIC for a few
commonly used functionals when applied to molecules.

Errors in the energy due to approximation of the xc-
functional stem from both an incomplete cancellation of the
electron self-interaction and an inaccurate description of the
inter-electronic interaction. The accuracy of the PZ-SIC does,
therefore, depend on the functional approximation it is used
with. From earlier studies, it was concluded that PZ-SIC of-
ten overcorrects errors in calculated observables of many-
electron systems such as equilibrium bond lengths and at-
omization energy. A scaled down modification of the PZ-SIC
functional has been proposed in the form of

ESIC[ρ↑, ρ↓] = EKS[ρ↑, ρ↓] − α

N∑

i=1

ESIE[ρi] , (6)

and for the Perdew, Burke, and Ernzerhof (PBE) functional
a factor α in the range of 0.4 to 0.5 could improve the de-
scription of some observables.19–21 More elaborate scaling
schemes have also been proposed.22, 23

A recent study of atoms with PZ-SIC showed that the
total energy can be lowered significantly by allowing the or-
bitals to be complex functions.24 This improved significantly
the results when PZ-SIC was applied to the PBE functional,
while a restriction to real orbitals led to much larger errors
than those of the uncorrected functional.25 According to the
variational principle, the addition of an imaginary compo-
nent to the orbitals can only lower the total energy. The ef-
fect on equilibrium geometry or energy differences such as
atomization energy or energy barriers is not monotonous in
a similar way. To our knowledge, previously published fully
variational studies of the energetics of molecules using sta-
tionary PZ-SIC have exclusively been based on real orbitals.
Only recently complex orbitals were used in a study focusing
on bond-lengths of molecules within an approximate Kohn-
Sham interpretation of the PZ-SIC.26

We present results on the ground state geometry and at-
omization energy of a set of 17 molecules, the equilibrium
structure of two “problematic” radicals, and the energy barrier
of four reactions. We studied the effect of SIC using three dif-
ferent functionals: the local spin density approximation (us-
ing Slater exchange27–29 and the Perdew-Wang parameteri-

zation of correlation,30 SPW92), the two generalized gradi-
ent approximations of Perdew, Burke, and Ernzerhof,31 and
Becke’s exchange functional12 and correlation of Lee, Yang,
and Parr13 (BLYP). The results of self-consistent calculations
using PZ-SIC (SIC) as well as the scaled down modification
with a factor of one half (SIC/2) are presented. For compar-
ison, calculations using the two hybrid functionals, PBE032

and B3LYP,10 were also carried out, as well as less accurate
SIC calculations using real orbitals.

II. COMPUTATIONAL METHOD

The energy minimum with respect to variation of the or-
bitals under the constraint of orthonormality is described by
the two sets of equations,33, 34

Ĥiϕi =
N∑

i=1

λjiϕj and λji = λ∗
ij , (7)

where the orbital-specific Hamiltonians are defined by

Ĥiϕi(r) = δESIC

δϕ∗
i (r)

. (8)

The Lagrange multipliers can be determined by projec-
tion of Eq. (7) as λji = 〈ϕj |Ĥi |ϕi〉. In contrast to semi-local
functionals, the matrix of Lagrange multipliers is not Hermi-
tian for any unitary transformation among the occupied or-
bitals. The minimum energy is determined both by the space
spanned by the set of orbitals and by the linear combination
of the orbitals.

The effective potential will not be the same for all orbitals
and this places SIC outside the domain of Kohn-Sham DFT. It
can be treated as a true Kohn-Sham functional by means of the
optimized effective potential method (OEP),35, 36 but in many
applications the functional is treated in the generalized Kohn-
Sham framework, i.e., the energy is minimized with respect
to variation of the orbitals, resulting in different potentials for
each one of them.

Analytical gradients of the energy of SIC functionals
have been derived37 and can be used in a direct minimiza-
tion of the energy. The efficiency can be improved by an ad-
ditional step in the iterative minimization. Before the orbitals
are altered according to the energy gradient, the unitary trans-
formation that minimizes the SIC energy terms is found. By
such a “unitary optimization” the convergence rate can be
greatly improved.38, 39 An efficient algorithm for the unitary
optimization has recently been developed.40

The calculations were carried out with the Gaussian-
type orbital based program QUANTICE.41 As analytical gra-
dients of the atomic positions are not available in the pro-
gram, the molecular structure has been optimized manually.
A sequence of internuclear distances and angles was sampled
and the minimum energy configuration found by cubic inter-
polation. The equilibrium structure was confirmed by com-
parison of the interpolated energy with the calculated energy
at the interpolated geometry. This manual scheme limits the
size of the molecules and the number of structural degrees of
freedom that can be optimized in the current version of this
software. In the geometry optimization, all analogous bonds
in a molecule were constrained to have the same length to
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reduce the computational effort compared to a completely un-
constrained structural relaxation.

For all calculations, atom-centered grids of 75 radial
shells42 of a 302-point Lebedev-Laikov grid43 were combined
to form a multicenter integration grid.44 The Cartesian rep-
resentation of correlation-consistent polarized valence-triple-
zeta45, 46 (cc-pVTZ) basis sets were used for most calcula-
tions. For the reaction barriers involving only hydrogen, a
quadruple-zeta basis set46 (cc-pVQZ) was used. The conver-
gence criterion of the electronic minimization was 10−8 Ha2

for the norm of the energy gradient. All calculations were us-
ing unrestricted orbitals, starting from a random initialization.

III. PZ-SIC ORBITALS

The orbital density dependence of the PZ-SIC energy ex-
pression results in a set of well defined “optimal orbitals,”
defined by a unitary transformation of the canonical orbitals.
For atomic systems, these orbitals have often been found to
resemble spn hybrid orbitals.47 When the orbitals are allowed
to be complex functions, the optimal orbitals still resemble
hybrid orbitals but can have significantly different shape and
orientation than hybrids of real orbitals. For neon, e.g., real or-
bitals produce a set of sp3 orbitals with tetrahedral orientation,
but complex orbitals produce a set with tetragonal orientation
without nodal surfaces.24 For molecules, the optimal orbitals
often take forms that are consistent with “chemical intuition,”
i.e., they can be interpreted as lone pairs, single, or multiple
bonds. Also, orbitals consistent with the more “exotic” three-
center or banana bonds can form. Also here, the shape of the
complex orbitals is often rather different from that of the real
ones, but the interpretation above can still be retained in many
cases. Figure 1 shows the optimized valence orbitals of one
spin channel for N2, obtained from PBE+SIC using complex
(a) and real (b) orbitals. The real orbitals are of two kinds:
three spatially degenerate orbitals that add up to a triple bond,
and two lone pairs. The triple bond is built up from two differ-
ent kinds of orbitals. One orbital has the character of a sigma-
bond with rotational symmetry about the molecular axis. The
other two orbitals are degenerate and symmetric about a plane
going through the molecular axis. The complex lone pairs do
not differ much qualitatively from the real orbitals. The real
orbitals are rather localized and in staggered orientation, but
the complex orbitals are more delocalized and to a larger ex-
tent share the same space.

IV. ATOMIZATION ENERGY OF MOLECULES

The ground state energy and equilibrium geometry of the
molecules H2, LiH, Li2, LiF, HF, N2, O2, F2, P2, CO, NO,
CO2, CH4, NH3, H2O, C2H2, and triplet methylene, CH2, was
calculated.

To test the accuracy of the various density functional
approximations, the predicted atomization energy, i.e., the
difference in the total energy of the atoms constituting a
molecule and the total energy of the molecule, was calcu-
lated and compared with experimental estimates corrected for
zero-point energy48 or, in the case of H2, with an accurate
theoretical result.49 The mean error (ME) and mean absolute

(a) (b)

FIG. 1. Complex (a) and real (b) energy minimizing valence orbitals of N2
calculated with PBE+SIC. Only one spin channel is shown, orbitals of the
other spin have the same shape. The top three orbitals represent the triple
bond, the bottom two represent lone pairs.

error (MAE) for each functional approximation is shown in
Figure 2. For comparison, results of SIC and SIC/2 calcula-
tions restricted to real orbitals are also shown. The numerical
values are listed in Table I, except for the results obtained with
real orbitals.

The LSD energy shows the largest deviation of all func-
tionals, strongly over binding the molecules. The errors
are reduced by applying SIC (see LSD+SIC), but this only
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FIG. 2. Mean error (ME, horizontal black lines) and mean absolute error
(MAE, columns) of calculated atomization energy compared to experimental
values (with zero point energy removed).48 For comparison, results obtained
from calculations restricted to real orbitals are shown by striped columns. The
best overall agreement is obtained with PBE+SIC/2, apart from the hybrid
functionals, in particular B3LYP.
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TABLE I. Deviation (in eV) of calculated atomization energy Eb from experiment (with zero point energy removed48). For H2 an accurate result was used as
reference.49 The energy has been calculated for the respective equilibrium geometry.

&Eb (eV) Exp. LSD +SIC/2 +SIC PBE +SIC/2 +SIC PBE0 BLYP +SIC/2 +SIC B3LYP

H2 4.75 0.16 0.18 0.22 − 0.21 − 0.26 − 0.30 − 0.22 0.00 − 0.04 − 0.07 0.03
Li2 1.13 − 0.10 − 0.10 − 0.09 − 0.27 − 0.25 − 0.24 − 0.30 − 0.24 − 0.25 − 0.25 − 0.23
LiH 2.52 0.11 0.13 0.17 − 0.21 − 0.24 − 0.26 − 0.24 − 0.01 − 0.07 − 0.12 0.01
LiF 6.03 0.73 0.41 0.14 − 0.01 − 0.43 − 0.78 − 0.34 0.06 − 0.41 − 0.80 − 0.11
HF 6.16 0.79 0.50 0.25 − 0.08 − 0.38 − 0.63 − 0.29 − 0.13 − 0.45 − 0.72 − 0.20
N2 9.84 1.75 1.38 1.05 0.73 0.33 0.00 − 0.07 0.59 0.02 − 0.46 0.11
O2 5.12 2.49 1.51 0.65 1.15 0.27 − 0.45 0.30 0.81 − 0.22 − 1.06 0.27
F2 1.65 1.78 0.70 − 0.15 0.71 − 0.60 − 1.52 − 0.08 0.55 − 1.02 − 1.65 0.01
P2 5.03 1.14 1.00 0.89 0.18 0.16 0.18 − 0.27 0.19 0.07 0.01 − 0.08
CO 11.32 1.66 1.16 0.70 0.37 − 0.04 − 0.39 − 0.23 0.07 − 0.47 − 0.92 − 0.23
NO 6.63 2.00 1.50 1.06 0.85 0.34 − 0.02 0.02 0.61 − 0.04 − 0.50 0.10
CO2 17.00 3.55 2.36 1.29 1.12 0.21 − 0.54 0.01 0.42 − 0.70 − 1.59 − 0.15
CH4 18.21 1.84 1.91 2.04 0.03 − 0.23 − 0.43 − 0.09 − 0.10 − 0.46 − 0.74 0.06
NH3 12.88 1.67 1.47 1.33 0.16 − 0.34 − 0.74 − 0.14 0.14 − 0.41 − 0.84 0.11
H2O 10.10 1.35 0.94 0.58 − 0.03 − 0.51 − 0.92 − 0.34 − 0.11 − 0.59 − 0.99 − 0.18
CH2 8.20 1.01 1.06 1.12 0.24 0.18 0.16 0.20 0.04 − 0.03 − 0.08 0.13
C2H2 17.52 2.41 2.34 2.29 0.49 0.40 0.35 0.02 0.07 − 0.06 − 0.13 − 0.03

ME . . . 1.43 1.09 0.80 0.31 − 0.08 − 0.38 − 0.12 0.17 − 0.30 − 0.64 − 0.02
MAE . . . 1.44 1.10 0.82 0.40 0.30 0.46 0.19 0.24 0.31 0.64 0.12

partially eliminates the errors. The GGA functionals, PBE
and BLYP, reduce the errors of LSD significantly, but still
predict most molecules to be too stable. The binding en-
ergy is reduced by SIC for both functionals, but the correc-
tion is too large. For PBE+SIC, the MAE is actually slightly
increased and is doubled for BLYP+SIC. The mean devia-
tion is greatly reduced by applying SIC scaled by one-half,
PBE+SIC/2, while the MAE is just slightly smaller than for
the uncorrected functional. BLYP+SIC/2 gives smaller errors
than BLYP+SIC but still predicts the binding energy to be too
low. Calculations using SIC that are restricted to real orbitals
predict lower atomization energy on average.

Vydrov et al. studied the effect of PZ-SIC on the heat
of formation using several functionals using calculations re-
stricted to real orbitals.25 They concluded that PZ-SIC only
improves the results for LSD, while larger deviations are
found when the correction is used with GGA functionals. As
shown here, it is important to allow the orbitals to be com-
plex functions. This reduces the over correction, but does not
eliminate it. Better agreement with the reference data is ob-
tained by scaling the SIC. No fitting of the scaling factor was
carried out, but a factor of one-half chosen to illustrate the
trend. The scaled SIC used with the PBE functional gives a
smaller mean error than the PBE0 hybrid functional, however,
the MAE indicates that some molecules are over bound while
others are too unstable. A systematic under binding is found
for molecules containing hydrogen, except for CH2 and C2H2.

An extreme case of the under binding obtained from the
BLYP+SIC functional is F2, which is predicted to be unsta-
ble. Also, PBE+SIC gives severe underestimation of the bind-
ing energy and elongation of the bond as shown in Table II.
The bond energy is overestimated by all uncorrected function-
als. For LSD, SIC/2 and SIC reduce the bond energy, the latter
giving a value closer to experiment. For PBE, the correction
greatly reduces the binding energy, resulting in an underesti-

mation already for SIC/2 and predicting a very weakly bound
molecule for SIC. This effect is even more pronounced for
BLYP, where SIC predicts the molecule not to be bound at
all. Usually, SIC/2 gives results that are intermediate of those
obtained by SIC and by the uncorrected functional. This is not
the case, however, for F2 in the GGA functionals. The bond
length is reduced by SIC/2, but increased when full SIC is
applied.

The optimal orbitals obtained using PBE+SIC/2 and
PBE+SIC are qualitatively different, as shown in Figure 3.
The two orbitals (one each for spin-up and spin-down) corre-
sponding to the single bond are similar for PBE+SIC/2. The
slight difference in shape does not result in spin polarization
of the total density, as it is compensated by the density of the
lone pairs. For PBE+SIC, the orbitals are distorted and local-
ize one on each of the two nuclei. The total density is spin
polarized and the electronic structure can be interpreted as an
intermediate state towards two separated fluorine atoms. The
effect of SIC on the molecule and the single atoms is not bal-
anced. The total energy of the molecule is predicted to be too
high relative to that of the atoms, resulting in a weak bond.
For BLYP+SIC the “correction” is unbalanced to such an

TABLE II. Atomization energy and equilibrium bond length of F2. In
BLYP+SIC, the molecule is not stable. The binding energy decreases from
the uncorrected functionals to SIC/2 to SIC. The equilibrium bond length,
however, changes non-monotonously with the fraction of SIC for the GGA
functionals.

Eb (eV) LSD PBE BLYP db (Å) LSD PBE BLYP

Ref. 1.65 1.65 1.65 Ref. 1.41 1.41 1.41
Uncorr. 3.43 2.36 2.20 Pure 1.38 1.41 1.43
SIC/2 2.35 1.05 0.63 SIC/2 1.33 1.36 1.38
SIC 1.50 0.13 0.00 SIC 1.30 1.44 . . .
Hybrid 1.57 1.66 Hybrid 1.38 1.40
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(a) (b)

FIG. 3. Optimized orbitals corresponding to the single bond in F2 calcu-
lated with (a) PBE+SIC/2 and (b) PBE+SIC. Both spin-up and spin-down
orbitals are shown. For PBE+SIC/2, the total density is not spin polarized.
For PBE+SIC, the orbitals are localized to some extent on one of the atoms
and the electron density is spin-polarized.

extent that the energy of F2 is above that of the atoms for
all nuclear separations.

Building the bond in a diatomic molecule can be de-
scribed as a delocalization of atomic hybrid orbitals over both
nuclei, accompanied by changes in the shape of the orbitals
to maintain orthogonality as well as relaxation of the orbitals
not participating in the bond. The SIC energy of an orbital
varies strongly depending on how localized it is. The valence
atomic orbitals become more compact with increasing atomic
number within a row of the periodic table. At the same time,
the magnitude by which SIC reduces the atomization energy,
increases for all functionals going from N2 to O2 to F2. Mov-
ing from the second to the third row of the periodic table, the
valence orbitals become more delocalized, and the changes in
atomization energy due to SIC are smaller as can be seen by
comparing P2 with N2. Preliminary results of the binding en-
ergy of larger molecules at unrelaxed geometry reveal similar
trends. These trends indicate that the effect of SIC on atom-
ization energy is more pronounced if localized atomic orbitals
participate in the bonding. However, without taking into ac-
count the changes in the orbital shape and the rearrangement
of non-bonding orbitals, such a simplified interpretation is in-

sufficient to explain all the observed effects and a more de-
tailed study is required.

Calculations of observables from energy differences usu-
ally are more accurate than the individual total energy values
because of partial cancellation of errors. One source of er-
rors is the limited basis set used in the calculations. This error
can in theory be eliminated by systematically increasing the
size of the basis set until a complete basis is reached, or in a
more practical way, until the calculated energy differences do
not change significantly. Even if a complete basis set is used,
an error remains from the approximate energy functional. A
functional with large errors in the predicted total energy must
be seen as too crude an approximation of the exact functional.
This, however, does not mean that it can not be a useful func-
tional for practical calculations. If the functional has a rather
constant error per electron for all systems, the energy differ-
ence of systems of the same number of electrons still can be
predicted accurately.

Figure 4 correlates the errors in total energy of the
molecules to that of the constituent atoms. Each circle de-
picts one molecule, the x-axis shows the error per electron
of the molecule, the y-axis that of the atoms. The diagonal
dashed line corresponds to a perfect cancellation of errors, for
points above or below the line, atomization energy is overes-
timated or underestimated, respectively. The diameter of the
circles indicates the number of electrons in each system. The
molecules containing hydrogen are indicated by circles filled
in grey.

In this representation, the effect of SIC and the admixture
of exact exchange can be studied in more detail than from the
atomization energy alone. The total energy of both the atoms
and the molecules is overestimated by PBE, around 0.2 eV per
electron for most molecules. The largest deviation is found for
P2, the largest system of the test set. With the exception of H2

(the smallest point), the errors of the molecules and atoms
are similar, but some spread around the diagonal is observed.
Half SIC and full SIC reduce the absolute errors for most
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in atomization energy. Systems in the upper left area are over bound, in the lower right area binding energy is too small. Grey points indicate the hydrogen
containing molecules.
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systems with most points moving closer to the origin.
However, the magnitude of the correction is in many cases
different for atoms than molecules. Going from PBE to
PBE+SIC/2 to PBE+SIC, the points are shifted down and
the vertical spread is reduced, which corresponds to smaller
and more similar errors per electron for the atoms. At the
same time, however, the horizontal spread increases, indicat-
ing a less systematic correction of the errors in the total en-
ergy of the molecules. This can be observed in particular for
the molecules containing hydrogen, indicated as grey points.
When PBE is used, the errors for the molecules are more sys-
tematic than the errors for the atoms. The opposite trend is ob-
served when PBE+SIC is used. For PBE0, the absolute mag-
nitude of the errors becomes less systematic for both atoms
and molecules, the spread is increased along the diagonal. At
the same time, the spread perpendicular to the diagonal is re-
duced, improving the overall cancellation of errors.

For BLYP the total errors are much smaller than for PBE,
and the cancellation is slightly better. BLYP+SIC/2 reduces
the total errors for many systems, but underestimates the at-
omization energy. For SIC, the points move further below the
diagonal but also spread both vertically and horizontally, in-
dicating an unsystematic effect of SIC on the total energy of
both atoms and molecules. B3LYP actually increases the mag-
nitude of the errors over BLYP, predicting too low energy for
all the atoms and molecules. The errors are, however, well
balanced and cancellation of errors results in the superior per-
formance of B3LYP with respect to atomization energy, as
shown in Figure 2. This improved cancellation of errors can
to some extent be explained by the origin of this hybrid func-
tional. B3LYP is based on the B3PW91 functional, for which
the parameters had been fit to reference data composed of the
total energy of ten atoms and 106 energy differences.11 Such
a fitting procedure places less weight on the accuracy of to-
tal energy than on cancellation of errors. The same parame-
ters are used in the B3LYP functional that, despite its differ-
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with respect to the atoms for BLYP+SIC.

ent functional components, predicts energy differences often
very accurately while atomic total energy is predicted to be
too low.

V. EQUILIBRIUM GEOMETRY

The equilibrium geometry of a molecule is found as the
minimum of the potential energy surface, determined from the
total energy of the molecule at different geometries. Again, a
constant error at all geometries will still allow for the pre-
diction of the correct equilibrium structure, while varying er-
rors can result in quantitatively or even qualitatively wrong
structures.

Figure 5 shows the mean and mean absolute error for the
equilibrium bond lengths of the set of molecules and func-
tionals studied, excluding F2, as it was shown to be not stable
in BLYP+SIC. The numerical values are listed in Table III.

TABLE III. Deviation (in pm) of calculated bond length db from experimentally determined geometry.50

&db Exp. LSD +SIC/2 +SIC PBE +SIC/2 +SIC PBE0 BLYP +SIC/2 +SIC B3LYP

H2 74 2.5 0.5 − 1.4 1.0 0.0 − 0.9 0.5 0.6 − 0.4 − 1.2 0.2
Li2 267 3.6 0.9 − 1.1 5.6 5.3 5.6 5.6 3.9 4.2 5.6 2.8
LiH 160 1.1 − 1.7 − 4.2 1.2 − 0.1 − 0.9 0.4 0.4 − 0.4 − 1.1 − 0.4
LiF 156 − 1.0 − 3.3 − 5.2 1.2 − 0.5 − 1.8 − 0.1 1.4 − 0.2 − 1.0 0.1
HF 92 1.4 − 0.8 − 2.7 1.3 − 0.6 − 2.0 0.1 1.6 − 0.5 − 2.0 0.5
N2 110 − 0.2 − 2.1 − 3.6 0.5 − 0.9 − 1.9 − 0.9 0.5 − 0.9 − 1.9 − 0.6
O2 121 − 0.3 − 3.8 − 6.4 1.2 − 2.4 − 4.9 − 1.4 2.3 − 1.8 − 4.3 − 0.3
F2 141 − 2.8 − 8.1 − 11.5 0.0 − 5.7 2.7 − 3.7 1.9 − 3.7 . . . − 1.6
P2 189 0.5 − 2.3 − 4.4 1.8 − 0.1 − 1.5 − 0.5 2.6 0.3 − 1.1 0.3
CO 113 0.0 − 1.9 − 3.5 0.9 − 0.5 − 1.7 − 0.4 1.0 − 0.5 − 1.7 − 0.3
NO 115 − 0.7 − 3.1 − 5.0 0.5 − 1.6 − 3.1 − 1.4 0.8 − 1.4 − 3.0 − 0.8
CO2 116 0.1 − 2.2 − 4.0 1.0 − 0.8 − 2.2 − 0.5 1.1 − 0.8 − 2.1 − 0.2
CH4 109 1.0 − 0.7 − 2.3 0.9 0.2 − 0.5 0.2 0.7 − 0.1 − 0.2 0.2
NH3 101 1.6 − 0.4 − 2.2 1.5 0.0 − 1.2 0.5 1.5 − 0.2 − 1.5 0.7
H2O 96 1.3 − 1.1 − 2.9 1.2 − 0.2 − 1.8 0.0 1.3 − 0.6 − 2.2 0.3
CH2 109 0.4 − 1.6 − 3.5 0.0 − 1.2 − 2.3 − 0.7 − 0.2 − 1.5 − 2.4 − 0.8
C2H2 (CC) 120 − 0.1 − 1.8 − 3.1 0.5 − 0.3 − 1.1 − 0.6 0.3 − 0.6 − 1.4 − 0.8
C2H2 (CH) 106 1.1 − 0.8 − 2.6 0.7 − 0.5 − 1.2 0.1 0.4 − 0.5 − 1.3 − 0.1

ME . . . 0.7 − 1.6 − 3.4 1.2 − 0.3 − 1.4 0.0 1.2 − 0.3 − 1.3 0.0
MAE . . . 1.0 1.7 3.4 1.2 0.9 2.0 0.8 1.2 0.9 2.0 0.5
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FIG. 6. Bond angle deviations for H2O, NH3, and CH2. The difference
of calculated and experimental50 angles H-X-H are shown for the various
functionals.

The uncorrected functionals overestimate the bond lengths on
average slightly by ∼1 pm, the GGA functionals generally
overestimate the bond length, whereas some molecules are
predicted to have too short bonds by LSD. PZ-SIC results in a
strong overcorrection. For LSD+SIC all bonds are predicted
to be much too short. For PBE+SIC and BLYP+SIC, the over-
correction is smaller. Here, all bond lengths except that of Li2
(and F2) are predicted to be too short.

The scaled SIC overcorrects LSD but gives on average
improved results for the GGA functionals. Still, as in the case
of atomization energy, the mean absolute error shows large
fluctuations. A restriction to real orbitals has less effect on
the bond length than on the atomization energy but
gives slightly worse results except for BLYP+SIC/2 and
BLYP+SIC. The hybrid functionals give the highest accuracy.

Figure 6 shows the deviation of the equilibrium bond
angles from experimental geometries for the non-linear
molecules. For H2O and NH3, the angle from LSD and the
hybrid functionals are in very good agreement with experi-
ment, while the GGA functionals predict angles 0.5◦–1.0◦ too
small. SIC/2 and SIC predict larger angles for all function-
als, with a monotonous increase from SIC/2 to SIC. For the
full correction, the angle in water is close to that of a regular
tetrahedral structure, indicated by a dotted line, in ammonia
it even exceeds this angle, in particular for BLYP+SIC. The
localized nature of the optimal orbitals can motivate an inter-
pretation along the lines of valence shell electron pair repul-
sion (VSEPR) theory. The increase in bond angles indicates a
relatively stronger interaction between bonding electron pairs
compared to the repulsion between a lone pair and a bond
pair. In methylene, the bond angle is predicted to be too large
by the LSD functional but is quite accurately predicted by
the GGA functionals. The angle is reduced in LSD+SIC, to
good agreement with experiment, while it increases for the
GGA+SIC functionals.

In all cases, the angles predicted by using real orbitals
with SIC are lower than when complex orbitals are used,
and except for methylene closer to experiment. In contrast to

TABLE IV. Equilibrium structure of the CH3 radical. The “out of plane” an-
gle, α, in degrees and energy difference between planar and pyramidal struc-
ture, &E, in meV is shown for the various SIC functionals for complex (c.)
and real (r.) orbitals. The uncorrected functionals all predict the correct planar
ground state.

LSD PBE BLYP

SIC/2 SIC SIC/2 SIC SIC/2 SIC

α (◦) c. 5.0 7.2 0.0 0.0 0.0 0.0
r. 6.7 8.7 7.1 9.1 7.4 9.6

&E (meV) c. 8 41 . . . . . . . . . . . .
r. 37 109 43 119 51 142

most equilibrium bond lengths, restriction to real orbitals has
a strong effect on the equilibrium bond angles. The hybrid
functionals here also give results that are closer to experimen-
tal results.

VI. STRUCTURE OF MOLECULAR RADICALS

Gräfenstein et al. found that the equilibrium structure of
the CH3 radical predicted by BLYP+SIC is non-planar,51 in
disagreement with both experimental observation50 and ab
initio calculations.51 We determined the ground state geom-
etry, restricted to C3v symmetry, and found that all the uncor-
rected functionals predict the proper planar structure. Results
obtained from applying SIC are listed in Table IV as the en-
ergy difference between the equilibrium structure and the pla-
nar structure of lowest energy, and as the out-of-plane angle,
i.e., the angle enclosed by a C–H bond and the plane defined
by the hydrogen atoms. Using real orbitals, the non-planar
geometry is preferred in both SIC and SIC/2 for all the func-
tionals. Both the angle and energy difference increase from
SIC/2 to SIC and are larger for the GGA functionals than for
LSD. Using complex orbitals, however, the self-interaction
corrected GGA functionals predict the geometry to be qual-
itatively correct, while it merely reduces the angle and energy
difference for LSD, retaining the incorrect pyramidal struc-
ture.

The destabilization of the planar structure by using SIC
with real orbitals can be understood from the hybridization of
the optimized orbitals. Figure 7 depicts the complex and real
optimized valence orbitals of the spin majority for the planar
equilibrium structure predicted by PBE+SIC. The complex
orbitals corresponding to C–H σ -bonds lie in the plane. The
orbital of the unpaired electron is delocalized symmetrically
over both sides of the plane with an increased density between
two of the bonding orbitals. The shape of these two orbitals
differs slightly from the shape of the third one. The total and
spin density have, despite the reduced symmetry of the opti-
mal orbitals, the full symmetry of the molecule.

The shape of the real orbitals is quite different. The or-
bital of the unpaired electron takes the form of a real sp3 hy-
brid. As the orbitals have to be orthogonal, the binding or-
bitals are forced into an unnatural shape, “bending” out of
plane between carbon and hydrogen. While an sp2 configu-
ration would seem more favorable, this would force the un-
paired orbital to be an unhybridized p-orbital, which is higher
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(a)

(b)

FIG. 7. (a) Complex and (b) real PBE+SIC optimized valence orbitals of
the planar CH3 radical. Isosurfaces of the spin-majority valence orbital den-
sities are shown in side view (left) and top view (right). The orbital of the
unpaired electron is colored. The complex orbitals have mirror symmetry
with respect to the plane. The real orbital for the unpaired electron has sp3

character and the C–H-binding orbitals are out of plane. The arrangement of
the real orbitals is not favored and the ground state geometry is predicted
to be pyramidal.51 Figure by Simon Klüpfel from ‘Implementation and re-
assessment of the Perdew-Zunger self-interaction correction’, ISBN: 978-
9935-9053-8-3. Used under a Creative Commons Attribution license.

in energy. The SIC energy contribution of the unpaired or-
bital is lowered to such an extent by the hybridization, that it
compensates for the higher SIC energy terms of the “banana-
bonds.” The total energy can be lowered further, by moving
the hydrogen atoms out of the plane, which results in a ge-
ometry in better agreement with the sp3 hybridization on the
carbon atom.

For LSD+SIC (not shown), the unpaired optimal orbital
appears as an intermediate between the real and complex or-
bital shown for PBE+SIC. The orbital is partially delocalized
but is not symmetric with respect to the plane. For atoms, it
was found that extending the variational space to complex
orbitals lowers the total energy in GGA+SIC more than in
LSD+SIC.24 This can play a role in the equilibrium geometry.
The SIC energy of the unpaired and binding orbitals will be
affected differently by the additional complex degrees of free-
dom and a comparison between GGA+SIC and LSD+SIC
might give insight into the origin of the insufficient correction
found for LSD+SIC. However, as the bond lengths are dif-
ferent for real and complex orbitals, all terms of the energy
functional change, making such an analysis more difficult.

Recently, Oyeyemi et al. found that PBE predicts an in-
correct equilibrium structure of the ethynyl radical, C2H.52

The structure is not linear, but rather bent by ∼166◦. This was
attributed to an over delocalization of the electron density due
to the self-interaction error of approximate functionals. By
including exact exchange in the form of hybrid functionals,
the correct linear ground state geometry is obtained. Figure 8
shows the energy of the bent radical relative to the energy of
the linear structure. For all angles, bond lengths have been op-
timized. For PBE the energy drops slightly when the molecule
starts to bend, with an optimal angle in good agreement with
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FIG. 8. Energy of the bent ethynyl radical relative to the energy of the lin-
ear geometry. The bond lengths have been optimized for each value of the
bond angle. The PBE ground state geometry is bent with an angle of ≈166◦

in agreement with previous calculations.52 PBE+SIC and PBE+SIC/2 both
favor the linear geometry in agreement with experiment.50

the previous study.52 For PBE+SIC and PBE+SIC/2, the lin-
ear geometry is favored. The self-interaction correction cor-
rects the Hartree self-energy, as does exact exchange. In cases
where inaccuracy of approximate functionals stems from the
spurious self-repulsion of the orbitals, (scaled) PZ-SIC cor-
rects in a way that is analogous to hybrid functionals which
include scaled exact exchange.

VII. REACTION BARRIERS

The energy barrier for four reactions has been calculated
to study the effect of SIC on the activation energy. The energy
difference between the reactant minimum and the lowest sad-
dle point of the potential energy surface is calculated. The re-
actions are listed in Table V as well as the geometry of the sad-
dle point and the barrier height evaluated from ab initio cal-
culations. For H4 and H3, the saddle point had been calculated
using configuration interaction (CI).53 The barrier heights are
calculated with respect to the reactants, using the accurate to-
tal energy of the hydrogen molecule49 and the exact energy
of the hydrogen atom as reference values. For HFH, only the
collinear, symmetric saddle point was considered, as a refer-
ence for this barrier is available,54 and the computational ef-
fort was too large to find the non-collinear saddle point which
is slightly lower in energy.55 The inversion barrier height of
NH3 had been calculated using the coupled cluster method,
CCSD(T).56

Figure 9 shows the deviation of the calculated saddle
points from the reference values. For H4 and H3, the bar-
rier height predicted by the uncorrected functionals is al-
ways too low, and is increased by SIC/2 and SIC. For both
reactions, SIC improves the energy barrier but it is still

TABLE V. Energy barrier for four reactions. For each saddle point, the point
group, energy barrier with respect to the reactants, and bond-length are listed.
The labels in bold face are used throughout the text for the saddle point.

Reaction Sym. E# (eV) r# (Å)

H2 + H → H3 → H + H2 D∞h 0.42 0.93
H2 + H2 → H4 → H2 + H2 D4h 6.42 1.23
HF + H → HFH → H + HF D∞h 2.12 1.14
H−NH−H → NH3 → H−HN−H D3h 0.22 0.99
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underestimated for H4. The bond lengths at the saddle point
decrease for SIC/2 and further for SIC, as is also found for
most molecules. Compared to the bond lengths predicted by
the uncorrected functionals, this increases the deviation for
H4 and overcorrects the slightly too large bonds for H3.

The HFH barrier is underestimated by the uncorrected
functionals and increases with SIC, monotonously from SIC/2
to SIC, the latter giving an overcorrection. For the GGA func-
tionals the bond lengths do not change monotonously but be-
have similar to the F2 bond length discussed above. The bond
length decreases for SIC/2 and agrees better with the refer-
ence value, but then increases for PBE+SIC, while hardly
changing for BLYP+SIC. For the functionals studied here,
the GGA+SIC/2 barriers give the best results, being more ac-
curate than the hybrid functionals. For this reaction, in con-
trast to the hydrogen barriers, different results are obtained
when using real orbitals. Here, the bond length is larger and
the barrier height is slightly lower than for complex orbitals.

These three barriers describe bond breaking situations
and are underestimated by the uncorrected functionals. The
ammonia inversion is qualitatively different, as bonds merely
rearrange and their lengths at equilibrium and saddle point
do not differ significantly. The calculated bond lengths in the
planar configuration are elongated by less than 2 pm com-
pared to the equilibrium structure.56 The inversion barrier cal-
culated with the uncorrected functionals is in good agreement
with the reference, but the bonds are predicted to be too long.
The bond length decreases and the barrier increases with SIC
for LSD, but for the GGA functionals the barrier is lowered
and becomes underestimated. Using real orbitals, on the other
hand, the barrier increases strongly. This qualitatively differ-
ent effect of SIC can be explained by the structure of the
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reactions, the errors per electron for the saddle point (S), reactants (R), and
separated atoms (A) is shown. The vertical difference between neighboring
points corresponds to errors in atomization energy (A-R) and barrier height
(R-S).

“lone pair”, as was done for the methyl radical. For the planar
molecule, the orbitals of both spins look very similar to those
in Figure 7. For the complex orbitals, spin up and spin down
orbitals are rotated with respect to each other by 120◦. In the
real case, the spin-up and spin-down orbitals are symmetric
with respect to reflection through the plane. As for CH3, this
configuration of the real orbitals is higher in energy than that
of the complex orbitals, which explains the large difference in
the predicted energy barrier.

As for the atomization energy, the errors in the calcu-
lated reaction barriers can be analyzed in greater detail by
comparison of the errors in total energy of the species in-
volved. Figure 10 shows the error per electron of the total
energy of the saddle point structure (S), the separated reac-
tants (R), and that of the separated atoms (A), calculated us-
ing PBE, PBE+SIC/2, and PBE+SIC. Points on the dashed
line correspond to a perfect description of the total energy, the
vertical difference between neighboring points corresponds to
deviations in the atomization energy (A-R) and energy barrier
(R-S).

For the H3 systems, the PBE energy of the hydrogen
atoms is quite accurate and the saddle point energy is only
slightly underestimated. The underestimation of both the bar-
rier height and atomization energy originates mainly from an
inaccurate description of the hydrogen molecule. When SIC is
applied, the energy of the atom is lowered insignificantly and
the energy of the molecule is raised slightly, making both total
and atomization energy of the molecule less accurate. How-
ever, PBE+SIC introduces a large error at the saddle point,
which cancels the error in the molecule. For SIC/2, the er-
rors introduced are less well balanced and the barrier is still
underestimated.

The H4 barrier is severely underestimated by the PBE
functional stemming from equally large errors of opposite
sign in the reactants and saddle point structure. The energy of
the saddle point is predicted accurately by PBE+SIC. Each
optimized orbital is to great extent localized at one of the hy-
drogen atoms and neighboring orbitals are of opposite spin.
In such a configuration, most of the exchange-correlation en-
ergy can be expected to be self-interaction energy, in which
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stable hydrogen trimer.

case PZ-SIC usually performs well. In this case the barrier is
improved by SIC, but as the energy of the hydrogen molecule
is too high, a still significant error in the barrier remains.

For the atomic reference of HFH and NH3, both the er-
ror in the total energy and the change when applying SIC are
dominated by the heavy atoms. The reduction of the error by
SIC is smaller for the HF molecule than for the atoms, thus
making the binding energy less accurate compared to PBE.
The error in the saddle point energy is increased and exceeds
that of the reactants. Here, half SIC gives a better cancel-
lation of error than both PBE and PBE+SIC. For the NH3

molecules, the effect is smaller and the barrier height changes
only slightly.

For the H3 reaction, we have calculated the energy along
a path connecting the saddle point and the reactants. For a
number of distances dH−H2 , the bond length of the H2 frag-
ment was relaxed. In Figure 11, the relaxed energy of the LSD
and PBE functionals is shown for several separations of the
fragments. The leftmost points correspond to the bond length
and energy barrier of the H3 saddle point. Increasing values
of dH−H2 describe the separation into a hydrogen atom and a
H2 molecule. In LSD, the combined system has lower energy
than the separated fragments for all separations, the energy
barrier is negative and H3 is predicted to be a stable molecule.
LSD+SIC/2 and LSD+SIC increase the H3 energy and pre-
dict a reaction barrier. The height is however still underes-
timated and at intermediate distances, a system more stable
than the reactants is found. In PBE, no intermediate configu-
ration is more stable than the reactants, but the energy differ-
ence is globally underestimated. PBE+SIC agrees well with
the CI results while the PBE0 hybrid does not describe the
system as well. However, as shown in Figure 10 the improved
description by the PBE+SIC functional results only from a

better cancellation of errors and not from a better description
of the system.

VIII. SUMMARY AND CONCLUSION

The results presented here on the energetics of small
molecules provide insight into both the strengths and the
shortcomings of the Perdew-Zunger self-interaction correc-
tion. The qualitatively wrong equilibrium structure of C2H
predicted by PBE is corrected by SIC. In the case of the CH3

radical, SIC had been found to predict an incorrect geometry,
but in the present study this was shown to be an artifact of a
restriction to real orbitals. This molecule and the H3 potential
energy surface emphasize the importance of using SIC with
GGA functionals to obtain more accurate results, as had al-
ready been shown in a study of the total energy of atoms.24

However, not all GGA functionals are suited for the applica-
tion of SIC. The F2 molecule is found to be unstable when
SIC is applied to the BLYP functional and the errors in total
energy are large and unsystematic for the rest of the molecules
in the test set as well as the isolated atoms.

Analysis of the total energy revealed that for PBE+SIC,
the errors per electron in the atomic systems are reduced
and show less fluctuations than that of the molecules, result-
ing in an unsystematic effect on the atomization energy. The
Perdew-Zunger SIC does not in general result in an overcor-
rection when applied to PBE, as the predicted total energy
is still too high. However, an overcorrection in calculated at-
omization energy is usually observed which can be improved
by scaling the SIC. The simple scaling scheme of using a
constant factor of one-half for all orbitals when applied with
PBE reduces the mean error in atomization energy to less than
that of the PBE0 hybrid functional, but still gives significant
absolute errors. For systems with only a few electrons, this
half-SIC approximation does not perform better than full SIC
in calculations of energy barriers. More flexible scaling22, 23

where full SIC is retained for one-electron systems or isolated
orbitals could work better for such systems. These scaling
schemes have so far only been used in combination with real
orbitals and their performances would need to be reassessed
using complex orbitals.
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